Available online at www.sciencedirect.com
ScienceDirect

Journal of Hazardous Materials 157 (2008) 94—105

Journal of
Hazardous

Materials

www.elsevier.com/locate/jhazmat

New methodology for hazardous waste classification
using fuzzy set theory
Part II. Intelligent decision support system

N. Musee *, C. Aldrich, L. Lorenzen

Centre for Process Engineering, University of Stellenbosch, Stellenbosch, Private Bag X1, Matieland 7602, South Africa

Received 23 March 2007; received in revised form 21 December 2007; accepted 28 December 2007
Available online 5 January 2008

Abstract

In part 1 of this paper, factors that influence hazards and eco/toxicity in composite hazardous wastes were described. In part 2, a computer-aided
decision support tool based on fuzzy set theory is proposed to support the classification of composite wastes. Given the chemical properties, the
nature of microorganisms that may be present, the behaviour of chemicals in humans and ecosystems, and the quantities of wastes, the computer-
aided tool automatically classifies the waste as benign, partially hazardous, hazardous or highly hazardous. The functionality of the computer-aided
decision tool is demonstrated through nine worked examples and the results are discussed in detail.
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1. Introduction

In part I [1], both tacit and implicit knowledge on factors
that influence the extent to which a certain waste is classified
as hazardous or benign were presented. Through an extensive
bibliographical search, knowledge on waste classification was
acquired from diverse sources, exhibiting both qualitative and
quantitative features characterized by varying degrees of uncer-
tainty. As both hazard and eco/toxicity properties of a waste
depend on its constituent chemicals and/or pathogens present,
it is feasible for the waste classes to be graded from having a
benign status to having a highly hazardous status. This is for the
obvious reason that the properties of a given waste are linked
to those of its constituent components and the quantity of the
waste under consideration.

The European Inventory of Existing Commercial Chemical
Substances (EINECS) has listed more than 100,000 substances
that were marketed in Europe between 1971 and 1981, when
the inventory was compiled [2]. A considerable number of these
chemicals were classified as hazardous or toxic to humans or

* Corresponding author. Tel.: +27 21 808 4062; fax: +27 21 808 2059.
E-mail address: museen2001 @yahoo.com (N. Musee).

0304-3894/$ — see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.jhazmat.2007.12.104

ecosystems. In addition, more than 8.4 million substances are
currently commercially available globally, of which approx-
imately 240,000 are inventoried and/or regulated chemicals
according to the Chemical Abstracts Service (CAS) web site [3].
In the USA, the EPA Toxicity Substances Control Act (TSCA)
inventory consists of more than 80,000 chemicals of which only
approximately 43% are polymers considered to pose low toxicity
risks to humans and ecosystems [4].

In view of the above statistics and others well summarized by
Muir and Howard [5], it is evident that the matrices of composite
wastes formed from various combinations of these chemicals
can range from a benign to a highly hazardous status. It is
also clear that for such a large number of chemicals, matrices
of possible composite wastes can be large. This may result in
costly preliminary assessment of the composite wastes using
bioassay experiments. To provide a tool for rapidly establish-
ing the hazardous status of a composite waste, we propose a
new methodology for risk assessment based on fuzzy logic the-
ory. The strength of fuzzy logic lies on its ability to provide
a language with syntax and semantics to translate imprecise,
vague and qualitative knowledge into numerical reasoning. This
creates a feasible solution in a domain where some individ-
ual chemical data are typically either lacking entirely or do not
exist in a form that can be readily incorporated into automated
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waste ranking methods. In the next section, the fundamentals
of fuzzy logic are presented, which helps in understanding the
fuzzy-based methodology for waste classification proposed in
this study. As a way of illustrating the functionality of the pro-
posed methodology, nine hypothetical composite wastes worked
examples are presented and discussed in detail.

2. Fuzzy set theory

Fuzzy set theory [6] generalizes ordinary or classical sets in
an attempt to model and simulate human linguistic reasoning
in a domain characterized by incomplete, imprecise, uncertain
and vague data. Therefore, as a soft computing tool, fuzzy logic
provides rational and well reasoned out solutions for complex
real world problems [7], such as hazardous waste classification.
Essentially, in a fuzzy system the rule-base is comprised of a
collection of fuzzy IF-THEN rules that are used by a fuzzy
inference engine to determine a mapping from fuzzy sets in the
input universe of discourse V C R" to fuzzy sets in the output
universe of discourse V C R based on fuzzy logic principles [8].

The fundamentals of fuzzy set theory are well known and
detailed treatment of the subject can be found elsewhere [§—10].
However, the fundamental concepts of fuzzy logic essential to
the design and development of intelligent decision support sys-
tems for hazardous waste classification are briefly summarized
here for convenience.

2.1. Fuzzy membership functions

In a fuzzy system, the variables are regarded as linguistic
variables to enable ‘computation with words’. Moreover, a lin-
guistic value refers to a variable whose value is a fuzzy number
or is a variable defined in linguistic terms [11]. Each linguistic
value, LV, is represented by a membership function pypy (x). The
membership function associates each crisp input, say Xa, with
a number, upyv(xa) in the range [0.1]. This number ury(xa)
represents the grade of the membership of X4 in LV or equiva-
lently, the truth value of proposition ‘crisp value A is LV’. The
overlapping of the membership functions allows an element to
belong to more than one set at the same time, and the degree of
membership into each set indicates to what extent the element
belongs to that particular fuzzy set (Fig. 1).

To illustrate the functionality of the membership function
values for the purpose of determining the linguistic value of
a given variable, an illustrative example is presented. Assume
that the computed hazardous waste index for the acute toxicity
variable is 0.4 in a universe of discourse of 0—1. Then, according
to Fig. 1, for an input of 0.4, the membership functions pac
(x;) generated are; wo =0.35 in the fuzzy set labelled very low,
13 =0.50 in the set labelled moderate, and in the rest of the
sets w1 = ua = s =0 for the sets none, high and extremely high,
respectively. Since in this work the max—min fuzzy inferencing
algorithm was applied, hence using the membership function
values (12 =0.35, u3 =0.50) the linguistic value was determined
as very low (min (0.35, 0.50) =0.35).

In this study, two forms of membership distribution func-
tions, namely, triangular- and trapezoidal-shaped functions were
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T T T T
Moderate High Extremely high

Degree of membership (1)
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Acute toxicity

Fig. 1. Triangular and trapezoidal membership distribution functions for the
mammalian a cute toxicity linguistic attribute associated with hazardous com-
posite waste.

used to represent the input and output variables in the knowl-
edge rule-base. Although the non-linear IT functions (Z- or
S-shaped) are perhaps the more logical parallel to the human
reasoning process, linear functions (triangular and trapezoidal)
are an acceptable compromise as they reduce computation time
considerably. A typical example of the input linguistic variable
membership functions are shown in Fig. 1 for the mammalian
acute toxicity input attribute. As can be seen in Fig. 1, various
segments of a membership function represent the limits of our
expectation that an object belongs to the corresponding fuzzy
set. For instance, the acute toxicity variable is decomposed into
five linguistic labels namely; none, very low, moderate, high and
extremely high.

2.2. Knowledge library

The intelligent decision support system described in this
paper classifies hazardous waste by using knowledge encoded
in the form of IF-THEN rules in a rule-base. Ultimately, this
makes the knowledge library (base) the core of the system and,
the breadth and quality of the knowledge determine the capacity
of the system to render useful decision support. The antecedent
and consequent parts of the fuzzy rules are of the form:

RO : IFx is F/ AND...x,is F],

. ey
THEN yis G

where Fl’ and G! are fuzzy sets, x=(x1,. .., xn)T eUandyeV
are input and output linguistic variables, respectively, with /=1,
2, ..., M. Practice has shown that fuzzy IF-THEN rules pro-
vide a convenient framework to incorporate human experts’
knowledge. Each fuzzy IF-THEN rule (Eq. (1)) defines fuzzy
set Flx...x F) = G'in the product space U x V.

The development of these IF-THEN rules defining the
relationship between the linguistic variables (both inputs and
outputs) and their fuzzy sets is a critical step, since they encapsu-
late the heuristic knowledge about the behaviour of the physical
system, or hazardous waste classification in this case. More than
300 rules were derived and systematically encoded in differ-
ent hierarchically interlinked knowledge rule-bases. Using these



96

rules, computation of the overall waste class consisted of the
initialization of certain primitive variables by the user, which
in turn were used as inputs to compute the composite output
at the next knowledge rule-base in the hierarchy. The outputs
from different knowledge modules on the particular level were
subsequently aggregated to yield composite values as an output
to the next higher level and the process continued until the final
overall waste class could be determined.

This approach is analogous to consulting several experts on
a certain problem and then deriving a final conclusion based on
each individual opinion. The model is flexible, robust and can
allow a user to choose initial values or adjust the rules in any
knowledge base on the basis of operational realities related to
the wastes under scrutiny.

2.3. Fuzzy inferencing

The core of the decision-making in a fuzzy logic system is
the inference system. It is instrumental in the derivation of an
aggregated output from a particular knowledge base using the
rules coded in the rule-bases. In practice, many fuzzy inferencing
methods have been developed, with the so-called max—min and
max-dot or max-prod [11] being the most popular. In this study,
the max—min fuzzy inferencing algorithm proposed by Mamdani
and Assilian [12] was used. In this system, the truth values of
the fuzzy output variables are clipped, such that the area under
the clip line determines the outcome of the rule.

Finally, a defuzzifier converts the fuzzy aggregate member-
ship grades generated from the inference engine into a non-fuzzy
output value. Again, there are various approaches to defuzzifi-
cation [13,14]. The most common is Yager’s centroidal method
[15], which was used in this paper. Yager’s method is sensitive
to the contribution of each activated rule, as opposed to other
methods that are biased towards rules exhibiting higher truth
values or firing strengths.
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3. Fuzzy assessment of waste classification

Decision-making in waste classification requires formalized
steps for analysing the available data and a logical procedure for
combining it. In this case, two steps were taken to make the sys-
tem robust. First, the core variables to be taken into account in the
classification algorithm were identified and, second, a hierarchi-
cal methodology for decomposing the problem into manageable
components was used. These components were organized into
various categories and sub-categories and linked in a hierarchical
manner.

In practice the assessment of waste classification often entails
ill-defined variables characterized by a high degree of uncer-
tainty owing to incomplete data or inadequate knowledge of the
underlying issues. With the hierarchical framework proposed
here, waste classes can be determined systematically and trans-
parently. Moreover, within this framework, both imprecise data
and qualitative knowledge acquired from an extensive literature
review were used to model waste classification.

3.1. Hierarchical structure

Fig. 2 depicts a hierarchically structured model for the most
important factors influencing the degree of hazardousness of
a given waste. In this study, the most influential factors were
decomposed into five levels. This procedure led to large sets of
data and knowledge which had to be accounted for in the waste
classification algorithm. For any waste, the primary attributes
that determine its level of hazardousness are contained in
Level-I, viz. chemical properties and the presence of pathogens
commonly referred to as potential effects, the exposure potency,
and quantity of the waste.

Normally, during evaluation of the final aggregated class for
a composite waste, the exposure potential should be multiplied
by the health and ecological effects, as well as the quantity of

Aggregated waste classification I

T
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Inherent chemical/ Exposure potential| | Waste quantit
pathological effects i Y - c ) Level-1
Human health effects | Ecotoxicity I | Bioaccumulation | | Perststence| Level-11
| Toxicological effects H Physicochemical ef‘fects I Chronic (A) || Acute (A | Air || Water || Soil \ Level-ITT
| Acute || Chronic || lnfectiousl | FlammabililyH Reactivity H Corrcsiviw| Level-TV
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Fig. 2. Hierarchical flowchart linking the hazard and eco/toxicity properties that influence waste classification (A: Aquatic).
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waste. The reason for this is that a higher level of either variable
increases the importance of the other. For instance, increased
human toxicity and ecotoxicity are more serious when the chem-
icals under scrutiny have a tendency to bioaccumulate or persist
for long periods in the environment than when they are not. In
fact, the extent of chemical and pathogenic effects also depends
on the actual quantities entering into the environment and get-
ting in contact with various living organisms. These synergistic
effects of the attributes in Level-I were accounted for in the fuzzy
IF-THEN rules in the first level knowledge rule-base.

The underlying attributes that determine the aggregate value
of each primary attribute in Level-I are distinctive, and each
has a different chain length, as can be seen from Level-IL
Each primary attribute was broken down to its basic attributes
where information and/or data are known (Fig. 2). The inherent
chemical and pathological effects, and exposure potency Level-
I attributes were further sub-divided into Level-1I attributes,
i.e. inherent chemicals- and pathogens-effects was divided into
human health risks and ecotoxicity, and similarly the expo-
sure potency was divided into bioaccumulation and persistence
attributes. However, the waste quantity attribute could not be
broken down any further and was determined directly at Level-I.
The inherent waste properties owing to the nature of the chemi-
cals and pathogens present, as well as the exposure potency were
further sub-divided into Level-III through the Level-V attributes,
where further sub-division became infeasible. For example, the
computation of the inherent chemical properties of the waste had
five levels, while the exposure potency had only three. Primar-
ily the level at which a given leaf terminates, signifies the point
where the system prompts the user for a crisp, fuzzy or a lin-
guistically defined input to initialize the calculations for all the
higher levels composite outputs in that particular leaf. The input
data for the lowest level attributes were sourced from numerous
bibliographical references as described in part I of this paper [1].

By using the fuzzy system, the inputs at the lowest leaf level
were combined to yield the first composite output which was
then passed on to the next higher level as an input. For example
in Level-1V, three basic attributes, namely flammability, cor-
rosivity and reactivity were combined in two stages to yield
the physicochemical-effects in Level-III using the methodology
described by Musee et al. [16]. The physicochemical effects
output together with the toxicological effects output at Level-
IIT were then used to compute the overall human health effects
in Level-II, and similarly, the approach was applied systemati-
cally in the entire framework. Fig. 2 diagrammatically illustrates
the complete model structure used to determine the aggregated
risk assessment posed to humans and ecosystems by composite
wastes.

3.2. Heuristic rules for waste classification assessment

A systematic methodology was developed to combine the
effects of constituent chemicals or pathogen(s) into a final waste
classification algorithm. As the information and data available in
this domain are diverse, a unique protocol for data manipulation
was designed at the lowest attribute level where user inputs were
required. For consistency purposes, several heuristic rules were

used in determining the toxicological and pathogenic effects in
a composite waste, namely

e The toxicity effect of a composite waste is an additive effect of
the constituent components. Therefore, the addition of indi-
vidual chemical dose effects provides a good approximation
for waste classification;

e The infection effects owing to the presence of pathogens
(fungi, viruses, bacteria) are dependent on the quantities of
the individual wastes under consideration. Consequently, if
viruses were the most dominant pathogens in the waste by
quantity (expressed in percentages), then the infectious effects
were presumed to be predominantly attributable to viruses,
though the contributions of other pathogens present were also
accounted for;

e The exposure potential of a given composite waste depends
on the constituent chemical(s), where the chemical with the
highest persistent and bioaccumulative values in any of the
three environmental media (air, water or soil) was used as
the fuzzy numerical system input. For instance, in any com-
posite waste under study, the highest of the bioaccumulation
and persistence values of the constituents were determined
and used as inputs for the computation of exposure potency.
This rule is reasonable, since the values of the half-life and
the octanol-water partition coefficients express the persis-
tence and bioaccumulation factor (BAF), respectively, and are
chemically intensive properties independent of the quantities
of waste under consideration. This implies that a chemical
with high values on either or both of these properties exerted
the most influence on the level of exposure potency of the
hazardous waste in the environment, as none of these effects
in living organisms depend on the quantity of waste.

3.3. Data evaluation

Before presenting the results derived from the proposed algo-
rithm, it is necessary to describe how the data obtained from
literature were handled in order to contextualize the final results
presented in this paper. To illustrate the plausibility of classifying
composite wastes using the properties of the constituent chemi-
cals (physicochemical, toxicological, ecotoxicity, and exposure
potential), a data set of 35 chemicals was collected (Table 1).
The data were sourced from a number of data banks, and wher-
ever possible, each of the lowest level attributes in a given
hierarchical leaf was provided with all the relevant informa-
tion. Nevertheless, it was observed that large differences exist
in the data available in literature, particularly in terms of values
and units associated with these values. These differences in data
were presumably owing to differences in measurement protocols
and the biological species involved in the generation of the data
by various researchers and institutions. Other reasons for these
differences could probably be attributable to different conditions
of measurement, or observation, or arising from discrepancies
between measured and calculated values.

By way of example, the acute toxicity attribute for aquatic
organisms (e.g. fish, invertebrates, and algae) was found to be
expressed in different exposure times of 24, 48 or 96 h in differ-
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Table 1
Toxicity, physicochemical, ecotoxicity and exposure potency data sets for 35 chemicals
Chemical substance CASH# Physicochemical Toxicity (humans) Exposure potency Ecotoxicity
properties
Fl R Acute Chronic Persistence Bio Acute (F, D, Al) Chronic (F, D, Al.)
Inh. LCs O LDsg DI LDs Cancer Non-cancer Air (d) Water (d)  Soil (d) BCF/BAF (d)  LCsp (96h) ECsp (48h)  LCsp (14d) ECsp (144d)
(mg/l) (mg/kg) (mg/kg)
A w A w
1 Hexachlorobenzene 118-74-1 0 0 3.6 3,500 No data 32E+3 4.7E+3 6.1E+4 9E+4 1,564 2,088 2,088 12,240-21,140  3-F, 20E-3-Al  8.3E-3-D No data No data
2 1,24-Trichlorobenzene 120-82-1 0 0 300 1,100 11,400 0 0 3E+1 2.1E+2 552 180 180 120-1,320 29-F 0.4-D 24-F 34-D
3 Formic acid 64-18-6 0 2 74 730-1,830  Nodata 0 0 1.7E-1 47E-3 Nodata  No data No data 0.22 46-100 F 60-D 100-A  No data No data
4 Acetonitrile 75-05-8 3 0 16,000 4,000 1,250 0 0 1.6E+2  7E+1 54 56 28 0.3-0.4 1640-F 10000-D NA NA
5 Hexachloro-1,3- 87-68-3 1 1 102 25 NA 85E+1 1.1E+2  1.5E+4 8E+4 1,194 180 180 2,163 NA NA NA NA
butadiene
6 Cadmium*! 7440-43-9 1 1 8 2,330 NA 83E+1 3.9E—49 S5E+6 3.6E+5 0 0 0 No data Insoluble in Insoluble in
water water
7  Hydrogen cyanide 74-90-8 4 2 0.16 4.5 6.9 0 0 2.1E+4 19E+4 Nodata No data No data 0.20 0.12 No data 2.2-F No data
8  Phenol*! 108-95-2 2 0 0.316 530 670 0 0 57E-2 54E-3 0 5 5 2 24.9-F 42-D 0.28-F 3
9  Formaldehyde 50-00-0 4 0 0.48 500 270 3E-3 3E—4 4.8 52E—1 0.125 7 7 Not 24.8-F 21-D No Chronic
bioaccumu- effect
lative
10 Allyl alcohol 107-18-6 3 0 0.165 64-105 48 or 89 0 0 1.7 2.3 0.61 0 27 Not 0.32 0.5 NA NA
bioaccumu-
lative
11 Carbon tetrachloride 56-23-5 0 0 8 2,350-2,920 5,070 8.2E+2 7.8E+2 1.4E+4 1.3E+4 400 years 1000 years 5 (volatile) 30 43-F 29(35)-D None None
12 Bis(tributylin) oxide 56-35-9 Nodata No data 0.065 112 (180) 900 0 0 2.8E+3 25E+4 1.1-18 0 0 900-30,000 3.4-F 0.0046-D No data 0.00018-D
13 Tetrachloroethyene 127-18-4 0 0 4 320-8,850 5,000 1.8 1.4 22E+2 1.5E+2 60 14 0 (volatile) 25.8-77.1 13.4-23.8-F 7.49-8.5-D 1.4-2.8-F 1.1-D
14 Benzene 71-43-2 3 0 13.05-52.2  930-7,000 8,260 1 85E—1 1.7E+1 14E+1 134 ok 7.2-38.4 6-24 6-15-F 140-320-D No data 1-D
15 Toluene*! 108-88-3 3 0 12.5-28.8 635-5,580  8,390-18,090 0 0 1.0 1.3 0.125 ok ok 90 28-66-F 11.5-D 13.7 No data
16  Glyphosate 1071-83-6 0 0 1.3 >5,000 >5,000 0.01 0.073 49 350 Nodata 8.1 14.9 0.18 10-F 0.015-D 0 0
17 Gamma-HCH 58-89-9 1 0 1.56 88 1,000 36 130 3.8E+3 1.2E+4 Nodata  281-301 No data 1,400 0.13-48-F 0.048-1.6 0.0091-0.024- No data
(Lindane) F
18  Methylene chloride 75-09-2 1 0 73,000 1,600 >2,000 0.61 0.37 44 25 Nodata 704 No data 2-40 502-F 220-D 240-F No data
19 P-phenylenediamine 106-50-3 0 1 No data 80 5,000 0 0 0.42 0.069 0.6 0.16 0 0.38 0.06-F 0.4-A No data 0.1-0.18-D
20 Sec-butyl alcohol 78-92-2 3 0 48.5 6,500 No data 0 0 0.6 0.27 2 5 0 1.71 3760-F; No data No data No data
(butan-2-ol) 950-A
21  Ethylene oxide 75-21-8 4 3 1.59-4.14 72-320 Not irritant 31 15 2E+3 9.3E+3  71.6 12.2 No data 0.35 84-F No data No data No data
22 Methyl chloride 74-87-3 4 0 53 1,800 No data 35 2 54E+2 3E+2 >150 >10years  No data Not 270-F No data No data No data
(chloromethane) bioaccumu-
lative
23 Parathion-methyl 298-00-0 3 1 0.135 4 2,000 0 0 1.5E+3 4.8E+3 32min 40 No data 71 No data 73 No data No data
24  Nitrobenzene 98-95-3 2 0 0.75 580-640 450-760 0 0 35 270 Not Persistent 3.1-48 42.60-F 35-50-D No data 35-D
25 1,4-Dioxane 12391-1 3 1 513 5,000-6,500  7,500-8,000 3.1E-2 9.6E-2 38E-2 12E—1 0.34-3.1 28-540 28-180 0.2-0.7 >8000-F 24-8400-D No data No data
26  Ethyl benzene 100-41-4 3 0 17.2 3,500 15,000-20,000 0 0 0.33 0.8 38 years Not Persistent 1-79.34 12.1-F 9.2-D No data No data
27  Triallate 2303-17-5 0 0 53 1,100 5,000 0.19 0.041 92 20 Nodata  61.3 18 1,280-1,520 1.3-F 91-D No data No data
28  Hexachlorocyclo- 77-47-4 0 0 0.035 315-1,300 150-820 0 0 50 250 0.021-4 <885 <100 1,230 0.180-F 0.12-D, 0.0144-F No data
pentadiene 0.08-A
29  Fenthion 55-38-9 0 0 0.0-1.2 200-300 1,680 0 0 79E+3 3.6E+4 <I2h 240 <1 Not 2.7E-3-0.87-  0.006-D, 1-D No data
bioaccumu- F 1.79-A
lative
30 Dicofol 115-32-:2 1 0 5 500 2,000 76 230 5.8E+3 1.7E+4 Nodata  0.33 30-60 10,000-25,000  0.065-1.6-E,  0.073-A 0.4-D No data
0.14-D,
31  Acrylaldehyde 107-02-8 3 2 0.018-0.021 42 200 0 0 22E+3 1.1E+4 Nodata  21-69 No data 344 0.014-F 0.051-0.08 No data No data
(Acrolein)
32 Chlorobenzene 108-90-7 3 0 18 1,110-2,455 >2,200 0 0 2.9 14 7.5 75 Not persistent  41-447 7.4-22.6-F 0.59-19.9-D  0.021-F 2.5-D
33 Acetone 67-64-01 3 0 76.1 1,800-9,750 20 0 0 0.36 0.23 10 Not Persistent 0.69 6,210-8,120-  >15,000-D No data 4,550—
F 4,800-D
34 1,1,1-Trichloroethane 71-55-6 1 1 18 >2,000 >15,000 0 0 200 190 >180 1 year Not persistent  0.7-9 52.8-F 2384-D 133-F No data
35  Acrylonitrile 107-13-1 3 2 1.3 81 148 1.8 1.7 88 65 5 0 0 48 25-F 7.6-D 0.34-3.6-F  Nodata

SOI#6 (8007) LST SIPMIIDI SHOPAVZDH J0 [DUINOL /D 12 2SN "N

Fl: flammability; R: reactivity; Inh.: inhalation; O: oral; D1: dermal, C: cancer; O: oral; Bio: bioaccumulation; F: fish; D: daphnia; Al.: algae; NA: not available; 1 implies that data for 48 h or 14 days was extrapolated using the available data published in literature; O implies that the
chemical do not produce the effect under investigation. ** Do not hydrolyze in water; *** vaporizes immediately from the soil. Pimephales promelas or Ictalurus punctatus (fish, fresh water) flow through for 96 h (this is the type of fish used in the calculations reported in this article),
and for the invertebrates, the daphnia magna (crustacean) data for 14 days was used.
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ent units, viz. lethal concentration (LC) or effect concentration
(EC) of 0, 50, 90 or even 100. In this paper, LCsy for 96 h and
ECs( for 48 h were used because of their ready availability in
literature pertaining to freshwater fishes (Pimephales promelas
and Ictalurus punctatus) and crustaceans (daphnids), respec-
tively. In addition, limited chronic aquatic toxicity data for most
of the 35 chemicals used in our study, led to acute aquatic toxic-
ity data being solely used for modeling ecotoxicity. On the other
hand, some of the data for particular attributes were expressed
in ranges for several chemicals. In accordance to the general
practice of experts, in our algorithm, we used mostly the data
corresponding to the worst case scenario to optimise safety aris-
ing in planning possible mitigating alternatives for managing the
waste under question.

Two of the 35 chemicals (hydrogen cyanide and formic acid)
had no data for the persistence attribute. In our case, we assumed
that these chemicals were not persistent in any of the three
environmental media. However, as data become available, the
0 values can be substituted. In such an eventuality, it would be
prudent to check if any significant changes might occur to the
final waste classification ranking, where one or both of these
chemicals are constituent components. Where persistence data
for only one environmental medium for a certain chemical was
available, it was automatically used as the system input.

To demonstrate the feasibility of the proposed algorithm for
waste classification, nine hypothetical composite wastes, each
containing five chemicals with known human toxicity, physic-
ochemistry, ecotoxicity and exposure potential, as reported in
Table 1, were generated. To analyse the waste and rank its level
of hazardousness, the system required a total of 71 inputs (quali-
tative or quantitative) to initialize the classification process. The
system results generated are presented and discussed in detail in
Section 4.

Fuzzy algorithm works with numerical data and so the qual-
itative classification of the effects related to infection from
pathogens had to be transformed from symbolic into numeri-
cal values. For each category of pathogens, the linguistic values
were transformed into numerical scores in the range from 0 to
1. Importantly, these scores were defined as fuzzy numbers to
incorporate vagueness and fuzziness in human judgment in clas-
sifying infectious effects owing to pathogens. The numerical
scores for the fuzzy system were determined using simple lin-
ear algebraic equations and the overall level of effects depicted
the predominant category of pathogens present in the waste,
expressed as a percentage.

For example, according to the UN classification of infectious
substances, viruses are grouped into four categories (Group-
I, Group-II, Group-III and Group-IV). In our algorithm, these
categories were represented by using both fuzzy triangular and
trapezoidal distribution functions, as shown in Fig. 3 (detailed
description of these classes was presented in part I of this work
[1]). To obtain numerical scores, four linear algebraic equations
were developed to compute the crisp input values in accordance
to the dominant virus group, as a function of the constituent
percentage of the viruses to the entire population of pathogens.
For instance, if the predominant viruses are Group-III viruses,
then the fuzzy input number was computed using the linear

equation:
Vin=0.35+0.3P 2)

where P (0 <P <1) is the overall percentage of viruses in the
waste.

Similar equations were developed for other virus groups as
well as the fungal and bacterial pathogens. These equations are
empirical and therefore subject to change depending on the needs
the user of the decision support tool described in this paper.
The full equations used for the classification of the infectious
pathogens in the hazardous waste are provided in Appendix A.

4. Tllustrative case studies

In these illustrative examples, the composite wastes studied
can be generically described as a simple mixture of chemicals.
According to Feron et al. [17], a simple mixture of chemicals,
regarded in this study as a composite waste, is defined as a mix-
ture comprising a relatively small number of chemicals (mostly
less than 10) whose composition is qualitatively and quanti-
tatively known [18]. For illustrative purposes, each composite
waste in our study were limited to five chemicals, for each of
which 13 data inputs were required to initialize hazard identifi-
cation and assessment of the waste. In total, the system required
71 user inputs to initialize the computing algorithm in order to
classify a given composite waste.

4.1. System functionality

Fig. 4 illustrates the functional steps of the algorithm pro-
posed in this paper. Owing to the complex relationships arising
from the contributions of each chemical, in this algorithm, waste
classification was approached as an unstructured decision prob-
lem, where both quantitative and qualitative data were taken into
account. First, the constituent components of the waste were
identified. In this case, the composite wastes were deemed to
consist of chemicals and various categories of pathogens. The
next step entailed analysis of the quantities of each constituent
component present in the composite waste. The quantity of each
chemical was expressed as a percentage in the range of 0-1.

T T T
Group-111 Group-IV

T
Group-II

1 Group-1

Degree of membership (1)

0 0.1 02 03 04 05 06 07 08 09 1
Viruses

Fig. 3. The transformation of the qualitative virus classes into numerical scores
in the universe of discourse of 0-1.
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1. Waste identification

Establishing constituent waste chemical components
Establishing pathogens present in the waste
3. Ascertaining quantities of each chemical in the waste

»

Are all the
chemicals and
pathogens
identified and
quantified?

No

2. Essaying the waste for pH evaluation

Y

3. Data acquisition and preparation

Acquisition of qualitative and quantitative data (e.g.
toxicological, ecological, infectious effects, etc.)
Estimation of unknown values

Normalization of the data

Calculation of classical aggregated values

v

4. Fuzzy ranking of the composite waste

B

Fuzzification of all the influential factors

2. Fuzzy aggregation of the input values

3. Defuzzification (fuzzy ranking) of the composite
waste

4, Qualitative ranking of waste classes

Y

[ System output: Class of hazardous waste ]

Fig. 4. System functionality for fuzzy waste classification.

Obviously the constituent chemical with the highest percentage
exerted most influence on the final waste ranking.

In step two, the composite waste was assayed to determine its
pH. The pH data were crucial in evaluating the corrosivity of the
composite waste. Wastes with extreme pH values tended to be
corrosive. In the third step, all the relevant information for each
chemical was sourced from literature and normalized in formats
suitable for application in the algorithm. In this case, the data
acquired were either numerical, qualitative and or a percent-
age. Due to the diversity of the data for each chemical and the
quest to increase the proposed algorithm evaluation accuracy,
several normalization procedures such as calculating mean val-
ues, approximating data points using known experimental values
of certain species, as well as taking logarithmic transformations
to normalize distribution scales, among other, were adopted.
Once normalization was complete, the aggregated values for a
particular data set (e.g. flammability, reactivity, acute toxicity,
etc.) in each composite waste were computed. These aggregated
values were then used as fuzzy input numbers into the fuzzy sys-

tems at the lowest level of a given leave to initialize the waste
classification process.

In the fourth step, the fuzzy rankings from all the knowledge
rule-bases in Level-V to Level-I were aggregated and the com-
puted lower level defuzzified output values were used as inputs
to the next level to determine their respective composite fuzzy
outputs. For illustrative purposes, the defuzzified Level-IV out-
put values for acute, chronic and infectious attributes were used
as inputs to compute the composite defuzzified output value
for the toxicological effects attribute in Level-III. The defuzzi-
fied crisp outputs obtained at Level-1, together with the effective
quantity of waste were subsequently used to calculate the final
aggregated ranking of the composite waste.

4.2. Case study results and discussion

In this section, we present nine illustrative case studies rep-
resenting different hypothetical composite wastes. The fuzzy
inputs of the hypothetical composite wastes are summarized in
Table 2.

Simulation of the input data pinpoints how different variables
affect the status of a given composite waste as a function of
the constituent chemicals and pathogens. The aggregated values
of the variables on different levels of the hierarchical decision
structure are shown in Table 3. As the solution to the waste clas-
sification problem was hierarchically structured, it is possible to
examine specific attribute scores in a particular composite waste
and to assess their impact on the final waste ranking. By using
this information, decision-makers can formulate proper correc-
tive or preventive measures with a view to reduce the effects
of such wastes in the environment. Moreover, the designers can
also use such knowledge to recommend benign chemical substi-
tutions for some of the constituent chemicals at the design stage
to mitigate the adverse effects in the event of the associated
wastes entering the environment.

To demonstrate how the algorithm was applied in classifying
a given waste, consider the results of the first hypothetical com-
posite waste (W1) presented in Table 3. Different aggregated
fuzzy values at different levels of the hierarchical decision tree
(Fig. 2) were computed by using the constituent chemicals and
pathogens, as the fuzzy inputs for various attributes defined in
Row 1 of Table 2. Columns 2—12 of Table 3 show aggregated
values ranging from the flammability attribute (Column 2) to
the aquatic acute toxicity (Column 12). Column 13 presents the
results for the highest constituent chemical value for the bioaccu-
mulation attribute that has been logarithmically transformed on
a scale of 0-5. After considering the bioaccumulation values for
the constituent chemicals in W1, the highest logarithmic value
of the bioaccumulation was found to be 4.48. This indicates
that W1 has a very high potential to accumulate in biological
systems.

The aggregated solutions for the chemical(s) with the high-
est persistence value(s) in air, water and soil media are shown in
Columns 1416, respectively. The persistence half-life values in
all three the environmental media were scaled to values ranging
from O to 1 for uniformity, as well as to aid transparent com-
parison in order to determine the medium in which the waste



Table 2
A complete data set for the hazard and toxicity rankings of the individual constituent chemicals in a composite waste

Waste Cl1 Cc2 C3 Cc4 C5 pH NF1 NF2 NF3 NF4 NF5 NR1I NR2 NR3 NR4 NRS5 [IHI 1H2 TH3 IH4 IHS OR1 OR2 OR3 OR4 ORS
2 (3) @ (5) (6) (@) (®) ()] 1o an a2 a3 14 a5 de (17 (18) (19) (20) 2n (22) (23) (24) (25) (26) 27)

W1 0.15 030 010 025 0.20 25 0 0 0 3 3 0 0 0 0 0 3.6 300 0.065 16,000 13.05 3,500 1,100 112 4,000 7,000

w2 023 0.8 030 016 013 118 0 1 4 0 3 2 1 2 0 0 74 102 0.16 4 125 730 25 45 5,000 5,000

w3 020 020 023 0.18 0.29 58 0 0 0 3 1 0 0 0 2 1 53 0.035 0.012 0.018 18 1,100 315 200 42 2,000

W4 040 010 010 0.17 023 59 4 1 2 4 3 3 1 0 0 0 1.59 8 0.316 0.48 0.165 72 2,330 530 500 70

W5 0.10 0.10 060 0.13 0.07 81 4 0 1 4 3 0 0 0 0 1 51.3 1.3 73,000 53 0.48 5,000 5,000 1,600 1,800 500

Wo6 025 030 015 0.15 0.15 76 0 3 0 1 3 0 0 0 0 0 300 16,000 8 73,000 76.1 1,100 4,000 2,920 1,600 8,000

w7 0.18 0.15 022 025 0.20 42 2 4 3 3 2 0 0 0 0 0 0.316 0.48 0.165 485 0.75 530 500 105 6,500 600

W8 0.14 033 017 027 0.09 37 3 3 2 4 3 0 1 0 3 0 48.5 0.135 1.8 17.2 6,500 4 580 100 3,500

w9 030 025 020 015 010 135 3 4 0 0 1 2 3 0 0 0 1.3 1.8 3.6 0.065 5 81 80 3,500 180 500

DE1 DE2 DE3 DE4 DES5 CAR1 CAR2 CAR3 CAR4 CAR5 NCAl NCA2 NCA3 NCA4 NCAS Pl P2 P3 AT1 AT2 AT3 AT4 ATS Bl B2 B3

(28) (29) (30) [€20)] (32) (33) (34) (35) (36) (37 (38) (39) (40) (41) (42) (43) (44) (45 (4o) 47) (48) (49) (50) (51) (52) (53)

1E+5 11,400 900 1,250 8260 4.7E+3 0 0 0 1 9E+3 30 2.5E+4 160 17 04 03 03 0.00832.9 0.0046 1,640 6 21,140 1,320 3E+4

1E+5 10E+5 6.9 5,000 8390 0 110 0 1.8 0 0.17 8E+4  2.1E+4 220 13 06 03 0.1 46 100 0.12 1.1 28 022 2,163 0.20

5,000 150 1,680 200 15,000  0.19 0 0 0 0 92 250 3.6E+4 1.1E+4 200 0 0 0 1.3 008 0.0027 0.014 52.8 1,520 1,230 0

1E+5 10E+5 670 270 89 31 83 0 0.003 0 93E+3 SE+6  0.057 4.8 23 02 02 06 84 10E+4  0.28 21 0.32 0.35 0 2

7,500 5,000 2,000 1E+5 270 0.096 0.01 061 35 0.003 0.12 350 44 540 4.8 03 04 03 24 0.015 220 270 21 0.7 0.18 40

11,400 1,250 5,070 2,000 20 0 0 820 0.61 0 210 70 14E+4 44 0.36 0 03 07 29 1,640 43 220 6,210 200 0.4 30

670 270 89 1E+5 760 0 0.003 0 0 0 0.057 4.8 23 0.6 35 0 03 07 42 24.8 0.5 3,760 8,400 2 0 0

1E+5 2,000 450 1E+5 15,000 0 0 0 31 0 0.6 4,800 270 9,300 0.8 045 04 005 950 73 35 84 9.2 1.71 71 4.8

148 1E+5 1E+5 900 2,000 1.8 31 47E+3 0 230 88 930 9E+4 25E+4 14E+4 0.7 0 0.3 034 84 0.001 0.0046 0.065 48 0.35 2E+4

B4 B5 Al A2 A3 Ad A5 Wl w2 W3 W4 W5 S1 S2 S3 S4 S5 WQ (tonnes) Waste management Level

(54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) 1 (712)

0.4 24 1,564 552 18 54 13.4 2,088 180 0 56 0 2,088 180 0 28 384 1,000 Partial

71.1 90 0 1,193 0 60 0.125 0 180 0 14 0 0 180 0 0 0 25 Effective

344 9 0 0 0.5 0 0 61.3 50 40 59 20 18 100 1 0 0 10 Moderate

0 0 0 0 0 0.125  0.61 12.2 0 5 7 0 0 0 5 7 27 90,000 Partial

0 0 0.125 0 0 150 3.1 7 8.1 704 3,650 540 7 14.9 0 0 180 600 Poor

2 0.69 55.2 54 1.46E+4 0 10 180 56 3.65E+5 704 0 180 28 5 0 0 3,000 Effective

1.71 0.2 0 0.125 0.61 2 0 5 7 0 5 0 5 7 27 0 0 1,000 Moderate

0 80 2 0.02 0 71.6 1.4E+4 5 40 0 12.2 0 0 0 0 0 0 30,000 Effective

2.5E+4 2.5E+4 5 71.6 1,564 10 0 0 12.2 2,088 0 0.33 0 0 2,088 0 60 6 Poor

C’s, NF’s, NR’s, IH’s, OR’s, DE’s, CAR’s, NCA’s, P’s, AT’s, B’s, A’s, W’s, S’s, WQ, WQ,, represent constituent components, NFPA rankings for flammability, NFPA rankings for reactivity; inhalation, oral, dermal, carcinogenicity, non-carcinogenicity, pathogen
percentages, aquatic chronic toxicity, bioaccumulation, persistence (A: air, W: water, S: soil), waste quantity and effective waste quantity, respectively. The numbers in the parentheses indicates the table column number. Numbers 1-5 in the first row refers to the
specific constituent chemical data in a given hypothetical composite waste. For instance, all symbols with 1 imply different chemical properties of constituent chemical one in any of the nine hypothetical composite wastes.
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Table 3

Complete set of system results based on inputs in Table 2

Waste NF NR IN OR DE C-CAR C-NCA GV GB GF AT B Ain Win Sip Pet WQhor
(€Y (@) (©)) (C) &) 6 ) ® (C)] 1o an a4y a3 a4  ds  de  an 18
W1 1.350 0.000 1.597 0.13 0.036 0.150 0.102 0470 0.645 0315 0.8700 4.477 1.000 1.000 1.000 1.000 2.704
w2 1.770  1.240 1.958 7.424 4353 0.180 0.205 0.860 0.315 0.515 0.0330 3.335 1.000 1.000 1.000 1.000 0.086
W3 0.830 0.650 3493 0.640 0.243 0.200 0.219 0.000 0.000 0.000 1.4820 1.771 0.250 0.341 0.556 0.556 0.161
W4 3270 1300 2329 0941 0.337 0.182 0.147 0410 0.260 0.160 0.0140 0.301 0.305 0.069 0.150 0.305 4.954
W5 1.730 0.070  0.249 0.063 0.059 0.138 0.141 0240 0370 0.645 0.2670 1.602 1.000 1.000 1.000 1.000 4.897
w6 1.500 0.000  0.022 0.047 0.787 0.150 0.152 0.000 0.315 0.280 0.0010 2300 1.000 1.000 1.000 1.000 0.325
w7 2,700 0.000 2487 0311 0356 0.150 0.196 0.000 0.315 0.280 0.0080 0.301 0.305 0.039 0.150 0.305 1.082
W8 3.100 1.140 2.829 8554 0.055 0.270 0.288 0.808 0.370 0.233 0.0005 1.903 1.000 0.222 0.000 1.000 0.440
W9 2.000 1350 2753 0.792 0.229 0.196 0.180 0.210 0.000 0.645 4.0000 4.398 1.000 1.000 1.000 1.000 0.292
HCFr HFr HRr HFRp ACr CHp IFE PCEr TEr ECr HHEr CPg Er WCr Qualitative Waste Class

(19) (20) 21 (22) (23) (24) (25) (26) 27 (28) 29) (30) (31) (32) 33)

0.634 0424 0.092 0323 0500 0.500 0.807 0.628 0.824 0.767 0.835 0.817 0.862 0.893 Extremely high (1)

0.674 0.500 0366 0350 0.700 0.700 0.891 0.667 0901 0.099 0.897 0.879 0.854 0.901 Extremely high (1)

0.163 0.327 0.280 0.241 0500 0.700 0.090 0.367 0.700 0.500 0.700 0.700 0.550 0.700 High (1), moderate (0.25)

0.130 0.715 0369 0550 0.700 0.605 0.599 0.700 0.700 0.094 0.700 0.700 0.300 0.550 Moderate (1)

0.130 0.500 0.092 0350 0.100 0.500 0.459 0500 0.500 0.572 0500 0.530 0.844 0.700 High (1), moderate (1)

0.090 0466 0.092 0350 0300 0507 0227 0500 0500 0.091 0.500 0.500 0.856 0.550 Moderate (1)

0427 0.649 0.092 0489 0504 0.675 0227 0.699 0.645 0.092 0.657 0.631 0.300 0.448 Moderate (0.49), low (0.26)
0.508 0.690 0366 0532 0.810 0.833 0.887 0.700 0.892 0.090 0901 0901 0.842 0.901 Extremely high (1)

0.832 0.500 0.384 0350 0.777 0.654 0383 0.819 0.789 0500 0.789 0.780 0.862 0.772 High (0.52), extremely high (0.22)

Cols. Column number, C-CAR, aggregated carcinogenicity; C-NCAR, aggregated non-carcinogenicity; GV, virus group, GB, bacteria group; GF, fungi group; AT,
aggregated aquatic toxicity; Aj,, maximum normalized persistence in air; Wj,, maximum normalized persistence in water; Sj,, maximum normalized persistence
in soil, Pefr, effective persistence system input; HCr, fuzzy corrosivity hazard output; HFg, fuzzy flammability hazard output, HRE, fuzzy reactivity hazard output;
HFRF, fuzzy flammability-reactivity hazard output; ACf, fuzzy acute hazard output, CHE, fuzzy chronic hazard output; IFg, fuzzy infectious hazard output; PCEF,
fuzzy physicochemical hazard index; TEF, fuzzy toxicological hazard index; ECF, fuzzy ecotoxicity hazard index; HHEF, fuzzy human health effects hazard index;
CPr, fuzzy inherent chemical and pathogens hazard index; Ef, fuzzy exposure potency index, WQpor, normalized waste quantity, and WCF, fuzzy overall waste

classification.

had the highest potential to pose a threat to both humans and
the ecosystems. In the algorithm, a chemical with the highest
persistence value was presumed to determine the composite’s
waste potential residence in the environment.

Column 17 depicts the fuzzy value of the maximum per-
sistence (algorithm input) used as an input for evaluating the
exposure potency of the entire composite waste. For the case of
hypothetical composite W1 (Row 1), the results show that the
waste is highly persistent in all three environmental media. That
is, one or more of the chemicals had half-lives greater than 2 days
for air and greater than 180 days for water and soil. In this case,
the fuzzy input value of 1 was used in the waste classification
algorithm. However, for composite W4 (Row 4), the algorithm
input was 0.305 (Column 17), as the waste had a higher per-
sistence in air than in water and soil based on the normalised
values in Columns 14-16 (0.305, 0.069 and 0.150 for air, water
and soil, respectively).

To model the exposure potency using the bioaccumula-
tion and persistence attributes, a knowledge rule-base of 12
IF-THEN rules was constructed. For waste No. 1, the classically
normalized input values of persistence (1) and bioaccumulation
(4.477) yielded an exposure potency fuzzy index value of 0.862
ranked qualitatively as high. Invariably, if W1 enters into the
environmental media, it has high potential of causing adverse
effects due to its high exposure potency.

Column 18 of Table 3 shows the weighted hazard value
related to the quantity of waste anticipated to impact on the

ecosystem. For composite W1, the waste quantity is 1000 tonnes
per year (Table 2, Row 1, Column 71). This is not high in terms
of annual production, but nonetheless, owing to its manage-
ment being rated qualitatively as ‘partial’ in Column 72 (Row
1, Table 2), the weighted hazard ranking was computed to be
2.704. Notably, the weighted hazard value for 1000 tonnes is
given more weight in terms of its potential impact on the ecosys-
tem in comparison to W8 (Table 2, Row 8, Column 71), despite
the latter being 30 times higher in annual tonnage, but managed
effectively. As aresult, the weighted hazard ranking for the latter
waste is evaluated to be low with a fuzzy value of 0.440.

Columns 19-21 of Table 3 present fuzzy aggregated values
for the Level-1V attributes of corrosivity, flammability and reac-
tivity, respectively. The following facts should be borne in mind.
First, while all the reactivity input values for the constituent
chemicals in W1 are 0, the reactivity fuzzy module output shown
in Column 21 was evaluated as 0.092 on a scale of 0-1. This
implies that even when all the constituent chemicals are benign
in terms of reactivity or any other attribute, a fuzzy system will
not compute a defuzzified output value of 0. In fact, this is a
conservative value and indicates that heuristics do not accord a
certainty of 0%.

Second, the flammability and reactivity fuzzy values of 0.424
and 0.092, respectively, yielded a fuzzy flammability reactivity
hazard index value of 0.323 (Row 1, Column 22 of Table 3).
The flammability reactivity hazard index was ranked linguis-
tically as moderate. Aggregating the corrosivity fuzzy output
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(0.624) and the flammability reactivity hazard index (0.323),
using a knowledge rule-base of 25 rules, yielded a fuzzy physic-
ochemical hazard index of 0.628 (Table 3, Row 1, Column 26)
in Level-1II. Similarly, the defuzzified modular numerical out-
put value of 0.628 was linguistically ranked as high. It is clear
that for W1, the final aggregated physicochemical hazard was
mainly influenced by the corrosivity, owing to the highly acidic
nature of the waste, as evidenced by the low pH of 2.5.

On the hierarchical leaf for computing the toxicological
effects in Level-III (Fig. 2), the lowest level input values (Level-
V attributes) for each of the Level-IV attributes were coded
into the algorithm, i.e. acute toxicity, chronic toxicity and infec-
tious effects (Level-IV in Fig. 2.). For W1, the input values are
presented in Table 2 in Row 1, Columns 18-45 for the five con-
stituent chemicals and three pathogens. The pathogens present
in this composite waste stream in terms of population percent-
ages were 40%, 30%, and 30% for viruses, bacteria and fungi,
respectively.

By way of simulating the user system inputs, the fuzzy acute
hazard index, fuzzy chronic hazard index and infectious hazard
index were computed to be 0.500, 0.500, and 0.807, respec-
tively. Owing to the dominance of Group-III type viruses and
Group-III type bacteria, which exhibit high infectious effects
according to the UN classification system, the overall infec-
tious effects were ranked linguistically as very high to reflect
the type of consortium of pathogens present in the waste. Using
the fuzzy aggregated values of acute toxicity (0.500), chronic
toxicity (0.500) and infectious effect (0.807), yielded a fuzzy
toxicological hazard index of 0.824 (Table 3, Row 1, Column27),
qualitatively ranked as very high. The infectious attribute in
Level-IV had the highest fuzzy output value, and it exerted the
highest influence on the toxicological effects of W1. The reason
for this is that the input variables in the toxicological effects
rule-base were accorded the same weights in the design of the
IF-THEN rules.

The computed aggregated fuzzy index values for the toxico-
logical effects (0.824) and physicochemical effects (0.628) were
then used as inputs for evaluating the overall potential human
health effects of W1. The resultant fuzzy hazard index related to
human health was found to be 0.835, mostly owing to the con-
stituent chemicals and pathogens, linguistically labelled as high
to very high. In this case the toxicological effects dominated as
far as the potential adverse effects of W1 on human health was
concerned.

In modeling the aquatic ecotoxicity in Level-II (Fig. 2), only
the acute aquatic toxicity data were used, because it was mostly
accessible. As the organisms (e.g. algae, fish or daphnia) used
in generating the ecotoxicity data for each chemical were differ-
ent, the data sourced from literature was a function of different
experimental protocols and population samples. For the purpose
of ensuring the consistency of results to be derived from the
proposed algorithm, the ecotoxicity data were subjected to two
screening tiers before it was incorporated into the fuzzy model.

If a chemical had ecotoxicity data available from more than
one organism, the highest acute value was chosen (a chemical
with a value less than 1 was deemed more toxic than a chemical
with a value greater than 1) in accordance to experts’ approach
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Fig.5. Bar graphsillustrating the influence of Level-I hazard indices and the nor-
malized waste quantity to the final waste class for nine hypothetical composite
wastes.

of considering the worst case scenario (precautionary principle).
That is, data value(s) for an organism indicating the potential to
experience the highest aquatic acute toxic effect if the chemi-
cal was released into the environment alone was chosen as the
system input. After identifying the highest value for each con-
stituent chemical in the waste, the highest aquatic toxicity value
for the composite waste was subsequently selected, using the
minimum function. In the second tier, the selected value in the
preceding step was normalized to a range of 0-1.

For W1, the aquatic acute toxicity data for the constituent
chemicals are presented in Table 2 (Row 1, Columns 46-50)
and the normalized value for the highest input data among the
five chemicals is 0.870 (Table 3, Row 1, Column 12). This nor-
malized value was linguistically ranked as extremely acute and
the potential ecotoxicity of the waste evaluated using the fuzzy
rule model was found to be 0.767 (Table 3, Row 1, Column
28). These results suggest that the fuzzy model provided fair
estimates, as from casual examination of the aquatic toxicity
values of the constituent chemicals one would expect W1 to
be highly toxic to the ecosystem. On the other hand, this value
can be improved and more representative, if the aquatic chronic
toxicity data for all the constituent chemicals become available.

Fig. 5 presents bar graphs illustrating the relationship of
the defuzzified fuzzy hazard indices in Level-I (chemical and
pathogen effects, and exposure potency) and the normalized
waste quantity (ranging from O to 1) to the final waste class
ranking for nine composite wastes.

As mentioned previously, the rank of a waste class is influ-
enced by input attributes in Level-I, in addition to the weights
assigned to each of them during the design process of the
IF-THEN rules. In this algorithm, the attributes related to intrin-
sic chemical properties and the nature of the pathogens were
assigned the highest weights, followed by the exposure potency,
and the contribution owing to the waste quantity that was
accorded the least weight.

Waste No.s’ 1 and 2 shows that the actual weight exerts neg-
ligible influence on the final waste classification. In both cases,
the defuzzified input values of the other two attributes (Level-I,
Fig. 2) were so high that they invoked strong synergistic effects
on each other, which led to both waste hazards being linguis-
tically classified as extremely high. A similar phenomenon can
be deduced for hypothetical wastes No.s” 8 and 9. In the case of



104 N. Musee et al. / Journal of Hazardous Materials 157 (2008) 94-105

W2, the ranking of the waste hazard as extremely high concurs
with the general understanding that any waste containing high
percentages of hydrogen cyanide is more likely to exhibit high
toxicity properties.

As shown in Fig. 5, waste No.s” 3 and 5 have the same final
waste ranking, although their inputs are markedly different. In
particular, the synergistic effects of all the Level-I attributes are
clearly demonstrated in these waste streams. Reducing the input
value of each of the Level-I attributes led to a drastic reduction
in the final waste ranking and the converse was also observed for
W6, irrespective of the exposure potential being rated as very
high. However, the moderate chemical and pathogenic toxicity
and low weighted hazard associated with the quantity of the
waste, contributed to the overall ranking of the waste hazard as
moderate. Similarly, for W7, the constituent components had
both low to very low linguistic rankings for the exposure poten-
tial and the waste quantity, respectively. On the other hand, the
inherent properties of the constituent components had moder-
ate to high ratings. However, the contribution of each attribute
in Level-1 led to the waste being rated as low to moderately
hazardous. In view of the foregoing discussions, it is clear that
integrating various factors that influence the waste ranking by
use of fuzzy sets, even if measured in different metrics, pro-
vides a more balanced approach to preliminary classification of
composite wastes.

5. Conclusions

A comprehensive classification protocol for composite
wastes is lacking as those presently reported in literature have
only incorporated a limited number of chemical properties or are
based on pre-defined lists. Moreover, the data and information
currently accessible contain varying degrees of uncertainty, e.g.
expressed symbolically, or measured using different protocols
and metrics. Consequently, the comparability and integration
of different data sets required to build a robust hazardous waste
classification model is still a major limitation, particularly where
traditional classical approaches are adopted. In this two-part
paper, a new classification methodology was introduced for
ranking the hazards of simple composite wastes on the basis
of their constituent components. Nine hypothetical examples of
composite wastes were presented and discussed to illustrate the
applicability of the proposed waste classification model.

The proposed methodology deals with data uncertainty, as
well as difficulties in integrating different data sets without
compromising the robustness of solutions. With the proposed
methodology, the contributions of different chemical proper-
ties and types of the pathogens are integrated by hierarchically
decomposing the problem and then applying fuzzy logic infer-
encing at each level. This has made it possible to develop hazard
indices at various levels of the hierarchical structure and to inte-
grate them into the next higher level, until the class of the waste
is determined.

The algorithmic model for composite waste classification can
be used in different ways as a decision support tool for real world
waste management problems. This could include rapid assess-
ment of waste hazardousness based on the intrinsic chemical

properties and presence of pathogens, selection of less hazardous
chemical substitutes in a particular application, and quantifica-
tion of the extent of the hazard posed by a composite waste to
both humans and ecosystems in order to develop alternatives for
handling it adequately and cost effectively.

Nevertheless, application of the decision tool also has certain
limits at present. The first is related to gaps in the data on the
intrinsic properties of chemicals. This can be improved as more
data and information on numerous chemicals becomes avail-
able in literature. Second, the system does not take into account
the possibility of the formation of new compounds, owing to
reaction of the constituent elements. This may result in the over-
all waste class being over- or under-estimated, depending on
whether the reaction products are benign or more hazardous
than the original reactants.

Appendix A

Set of empirical equations used for evaluating the effect of
pathogens

Categories  Virus Bacteria Fungal

I Vi=P1 x0.3 Bi=P2x04 Fi=P3x04

I Vi=0.15+P1 x0.3 By=0.15+P2x  Fy=0.15+P3 x
0.55 0.55

I Vi=035+P1 x0.3 Bm=045+P2x Fip=0.45+P3 x
0.55 0.55

v Viy =0.65+P1 x 0.35

These above equations are empirical and are flexible enough to allow variations
based on the data set of the user so as to meet the needs of policy makers
depending on hazardous waste management priorities.
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