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bstract

In part 1 of this paper, factors that influence hazards and eco/toxicity in composite hazardous wastes were described. In part 2, a computer-aided
ecision support tool based on fuzzy set theory is proposed to support the classification of composite wastes. Given the chemical properties, the

ature of microorganisms that may be present, the behaviour of chemicals in humans and ecosystems, and the quantities of wastes, the computer-
ided tool automatically classifies the waste as benign, partially hazardous, hazardous or highly hazardous. The functionality of the computer-aided
ecision tool is demonstrated through nine worked examples and the results are discussed in detail.

2008 Elsevier B.V. All rights reserved.
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. Introduction

In part I [1], both tacit and implicit knowledge on factors
hat influence the extent to which a certain waste is classified
s hazardous or benign were presented. Through an extensive
ibliographical search, knowledge on waste classification was
cquired from diverse sources, exhibiting both qualitative and
uantitative features characterized by varying degrees of uncer-
ainty. As both hazard and eco/toxicity properties of a waste
epend on its constituent chemicals and/or pathogens present,
t is feasible for the waste classes to be graded from having a
enign status to having a highly hazardous status. This is for the
bvious reason that the properties of a given waste are linked
o those of its constituent components and the quantity of the
aste under consideration.
The European Inventory of Existing Commercial Chemical

ubstances (EINECS) has listed more than 100,000 substances

hat were marketed in Europe between 1971 and 1981, when
he inventory was compiled [2]. A considerable number of these
hemicals were classified as hazardous or toxic to humans or
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Composite hazardous wastes

cosystems. In addition, more than 8.4 million substances are
urrently commercially available globally, of which approx-
mately 240,000 are inventoried and/or regulated chemicals
ccording to the Chemical Abstracts Service (CAS) web site [3].
n the USA, the EPA Toxicity Substances Control Act (TSCA)
nventory consists of more than 80,000 chemicals of which only
pproximately 43% are polymers considered to pose low toxicity
isks to humans and ecosystems [4].

In view of the above statistics and others well summarized by
uir and Howard [5], it is evident that the matrices of composite
astes formed from various combinations of these chemicals

an range from a benign to a highly hazardous status. It is
lso clear that for such a large number of chemicals, matrices
f possible composite wastes can be large. This may result in
ostly preliminary assessment of the composite wastes using
ioassay experiments. To provide a tool for rapidly establish-
ng the hazardous status of a composite waste, we propose a
ew methodology for risk assessment based on fuzzy logic the-
ry. The strength of fuzzy logic lies on its ability to provide
language with syntax and semantics to translate imprecise,
ague and qualitative knowledge into numerical reasoning. This
reates a feasible solution in a domain where some individ-
al chemical data are typically either lacking entirely or do not
xist in a form that can be readily incorporated into automated
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aste ranking methods. In the next section, the fundamentals
f fuzzy logic are presented, which helps in understanding the
uzzy-based methodology for waste classification proposed in
his study. As a way of illustrating the functionality of the pro-
osed methodology, nine hypothetical composite wastes worked
xamples are presented and discussed in detail.

. Fuzzy set theory

Fuzzy set theory [6] generalizes ordinary or classical sets in
n attempt to model and simulate human linguistic reasoning
n a domain characterized by incomplete, imprecise, uncertain
nd vague data. Therefore, as a soft computing tool, fuzzy logic
rovides rational and well reasoned out solutions for complex
eal world problems [7], such as hazardous waste classification.
ssentially, in a fuzzy system the rule-base is comprised of a
ollection of fuzzy IF–THEN rules that are used by a fuzzy
nference engine to determine a mapping from fuzzy sets in the
nput universe of discourse V ⊂ Rn to fuzzy sets in the output
niverse of discourse V ⊂ R based on fuzzy logic principles [8].

The fundamentals of fuzzy set theory are well known and
etailed treatment of the subject can be found elsewhere [8–10].
owever, the fundamental concepts of fuzzy logic essential to

he design and development of intelligent decision support sys-
ems for hazardous waste classification are briefly summarized
ere for convenience.

.1. Fuzzy membership functions

In a fuzzy system, the variables are regarded as linguistic
ariables to enable ‘computation with words’. Moreover, a lin-
uistic value refers to a variable whose value is a fuzzy number
r is a variable defined in linguistic terms [11]. Each linguistic
alue, LV, is represented by a membership function μLV (x). The
embership function associates each crisp input, say XA, with
number, μLV(xA) in the range [0.1]. This number μLV(xA)

epresents the grade of the membership of XA in LV or equiva-
ently, the truth value of proposition ‘crisp value A is LV’. The
verlapping of the membership functions allows an element to
elong to more than one set at the same time, and the degree of
embership into each set indicates to what extent the element

elongs to that particular fuzzy set (Fig. 1).
To illustrate the functionality of the membership function

alues for the purpose of determining the linguistic value of
given variable, an illustrative example is presented. Assume

hat the computed hazardous waste index for the acute toxicity
ariable is 0.4 in a universe of discourse of 0–1. Then, according
o Fig. 1, for an input of 0.4, the membership functions μAC
xi) generated are; μ2 = 0.35 in the fuzzy set labelled very low,
3 = 0.50 in the set labelled moderate, and in the rest of the

ets μ1 = μ4 = μ5 = 0 for the sets none, high and extremely high,
espectively. Since in this work the max–min fuzzy inferencing
lgorithm was applied, hence using the membership function

alues (μ2 = 0.35, μ3 = 0.50) the linguistic value was determined
s very low (min (0.35, 0.50) = 0.35).

In this study, two forms of membership distribution func-
ions, namely, triangular- and trapezoidal-shaped functions were

l
s
3
e

ig. 1. Triangular and trapezoidal membership distribution functions for the
ammalian a cute toxicity linguistic attribute associated with hazardous com-

osite waste.

sed to represent the input and output variables in the knowl-
dge rule-base. Although the non-linear � functions (Z- or
-shaped) are perhaps the more logical parallel to the human
easoning process, linear functions (triangular and trapezoidal)
re an acceptable compromise as they reduce computation time
onsiderably. A typical example of the input linguistic variable
embership functions are shown in Fig. 1 for the mammalian

cute toxicity input attribute. As can be seen in Fig. 1, various
egments of a membership function represent the limits of our
xpectation that an object belongs to the corresponding fuzzy
et. For instance, the acute toxicity variable is decomposed into
ve linguistic labels namely; none, very low, moderate, high and
xtremely high.

.2. Knowledge library

The intelligent decision support system described in this
aper classifies hazardous waste by using knowledge encoded
n the form of IF–THEN rules in a rule-base. Ultimately, this

akes the knowledge library (base) the core of the system and,
he breadth and quality of the knowledge determine the capacity
f the system to render useful decision support. The antecedent
nd consequent parts of the fuzzy rules are of the form:

R(l) : IFx1 is F1
1 AND . . . xn is F1

n ,

THEN y is G1
(1)

here Fi
l and Gl are fuzzy sets, x = (x1,. . ., xn)T ∈ U and y ∈ V

re input and output linguistic variables, respectively, with l = 1,
, . . ., M. Practice has shown that fuzzy IF–THEN rules pro-
ide a convenient framework to incorporate human experts’
nowledge. Each fuzzy IF–THEN rule (Eq. (1)) defines fuzzy
et Fl

1x . . . x F l
n ⇒ Gl in the product space U × V.

The development of these IF–THEN rules defining the
elationship between the linguistic variables (both inputs and
utputs) and their fuzzy sets is a critical step, since they encapsu-

ate the heuristic knowledge about the behaviour of the physical
ystem, or hazardous waste classification in this case. More than
00 rules were derived and systematically encoded in differ-
nt hierarchically interlinked knowledge rule-bases. Using these
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ules, computation of the overall waste class consisted of the
nitialization of certain primitive variables by the user, which
n turn were used as inputs to compute the composite output
t the next knowledge rule-base in the hierarchy. The outputs
rom different knowledge modules on the particular level were
ubsequently aggregated to yield composite values as an output
o the next higher level and the process continued until the final
verall waste class could be determined.

This approach is analogous to consulting several experts on
certain problem and then deriving a final conclusion based on
ach individual opinion. The model is flexible, robust and can
llow a user to choose initial values or adjust the rules in any
nowledge base on the basis of operational realities related to
he wastes under scrutiny.

.3. Fuzzy inferencing

The core of the decision-making in a fuzzy logic system is
he inference system. It is instrumental in the derivation of an
ggregated output from a particular knowledge base using the
ules coded in the rule-bases. In practice, many fuzzy inferencing
ethods have been developed, with the so-called max–min and
ax-dot or max-prod [11] being the most popular. In this study,

he max–min fuzzy inferencing algorithm proposed by Mamdani
nd Assilian [12] was used. In this system, the truth values of
he fuzzy output variables are clipped, such that the area under
he clip line determines the outcome of the rule.

Finally, a defuzzifier converts the fuzzy aggregate member-
hip grades generated from the inference engine into a non-fuzzy
utput value. Again, there are various approaches to defuzzifi-
ation [13,14]. The most common is Yager’s centroidal method

15], which was used in this paper. Yager’s method is sensitive
o the contribution of each activated rule, as opposed to other

ethods that are biased towards rules exhibiting higher truth
alues or firing strengths.

a

a
b

Fig. 2. Hierarchical flowchart linking the hazard and eco/toxicity
s Materials 157 (2008) 94–105

. Fuzzy assessment of waste classification

Decision-making in waste classification requires formalized
teps for analysing the available data and a logical procedure for
ombining it. In this case, two steps were taken to make the sys-
em robust. First, the core variables to be taken into account in the
lassification algorithm were identified and, second, a hierarchi-
al methodology for decomposing the problem into manageable
omponents was used. These components were organized into
arious categories and sub-categories and linked in a hierarchical
anner.
In practice the assessment of waste classification often entails

ll-defined variables characterized by a high degree of uncer-
ainty owing to incomplete data or inadequate knowledge of the
nderlying issues. With the hierarchical framework proposed
ere, waste classes can be determined systematically and trans-
arently. Moreover, within this framework, both imprecise data
nd qualitative knowledge acquired from an extensive literature
eview were used to model waste classification.

.1. Hierarchical structure

Fig. 2 depicts a hierarchically structured model for the most
mportant factors influencing the degree of hazardousness of

given waste. In this study, the most influential factors were
ecomposed into five levels. This procedure led to large sets of
ata and knowledge which had to be accounted for in the waste
lassification algorithm. For any waste, the primary attributes
hat determine its level of hazardousness are contained in
evel-I, viz. chemical properties and the presence of pathogens
ommonly referred to as potential effects, the exposure potency,

nd quantity of the waste.

Normally, during evaluation of the final aggregated class for
composite waste, the exposure potential should be multiplied
y the health and ecological effects, as well as the quantity of

properties that influence waste classification (A: Aquatic).
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aste. The reason for this is that a higher level of either variable
ncreases the importance of the other. For instance, increased
uman toxicity and ecotoxicity are more serious when the chem-
cals under scrutiny have a tendency to bioaccumulate or persist
or long periods in the environment than when they are not. In
act, the extent of chemical and pathogenic effects also depends
n the actual quantities entering into the environment and get-
ing in contact with various living organisms. These synergistic
ffects of the attributes in Level-I were accounted for in the fuzzy
F–THEN rules in the first level knowledge rule-base.

The underlying attributes that determine the aggregate value
f each primary attribute in Level-I are distinctive, and each
as a different chain length, as can be seen from Level-II.
ach primary attribute was broken down to its basic attributes
here information and/or data are known (Fig. 2). The inherent

hemical and pathological effects, and exposure potency Level-
attributes were further sub-divided into Level-II attributes,

.e. inherent chemicals- and pathogens-effects was divided into
uman health risks and ecotoxicity, and similarly the expo-
ure potency was divided into bioaccumulation and persistence
ttributes. However, the waste quantity attribute could not be
roken down any further and was determined directly at Level-I.
he inherent waste properties owing to the nature of the chemi-
als and pathogens present, as well as the exposure potency were
urther sub-divided into Level-III through the Level-V attributes,
here further sub-division became infeasible. For example, the

omputation of the inherent chemical properties of the waste had
ve levels, while the exposure potency had only three. Primar-

ly the level at which a given leaf terminates, signifies the point
here the system prompts the user for a crisp, fuzzy or a lin-
uistically defined input to initialize the calculations for all the
igher levels composite outputs in that particular leaf. The input
ata for the lowest level attributes were sourced from numerous
ibliographical references as described in part I of this paper [1].

By using the fuzzy system, the inputs at the lowest leaf level
ere combined to yield the first composite output which was

hen passed on to the next higher level as an input. For example
n Level-IV, three basic attributes, namely flammability, cor-
osivity and reactivity were combined in two stages to yield
he physicochemical-effects in Level-III using the methodology
escribed by Musee et al. [16]. The physicochemical effects
utput together with the toxicological effects output at Level-
II were then used to compute the overall human health effects
n Level-II, and similarly, the approach was applied systemati-
ally in the entire framework. Fig. 2 diagrammatically illustrates
he complete model structure used to determine the aggregated
isk assessment posed to humans and ecosystems by composite
astes.

.2. Heuristic rules for waste classification assessment

A systematic methodology was developed to combine the
ffects of constituent chemicals or pathogen(s) into a final waste

lassification algorithm. As the information and data available in
his domain are diverse, a unique protocol for data manipulation
as designed at the lowest attribute level where user inputs were

equired. For consistency purposes, several heuristic rules were

b

o
e

s Materials 157 (2008) 94–105 97

sed in determining the toxicological and pathogenic effects in
composite waste, namely

The toxicity effect of a composite waste is an additive effect of
the constituent components. Therefore, the addition of indi-
vidual chemical dose effects provides a good approximation
for waste classification;
The infection effects owing to the presence of pathogens
(fungi, viruses, bacteria) are dependent on the quantities of
the individual wastes under consideration. Consequently, if
viruses were the most dominant pathogens in the waste by
quantity (expressed in percentages), then the infectious effects
were presumed to be predominantly attributable to viruses,
though the contributions of other pathogens present were also
accounted for;
The exposure potential of a given composite waste depends
on the constituent chemical(s), where the chemical with the
highest persistent and bioaccumulative values in any of the
three environmental media (air, water or soil) was used as
the fuzzy numerical system input. For instance, in any com-
posite waste under study, the highest of the bioaccumulation
and persistence values of the constituents were determined
and used as inputs for the computation of exposure potency.
This rule is reasonable, since the values of the half-life and
the octanol–water partition coefficients express the persis-
tence and bioaccumulation factor (BAF), respectively, and are
chemically intensive properties independent of the quantities
of waste under consideration. This implies that a chemical
with high values on either or both of these properties exerted
the most influence on the level of exposure potency of the
hazardous waste in the environment, as none of these effects
in living organisms depend on the quantity of waste.

.3. Data evaluation

Before presenting the results derived from the proposed algo-
ithm, it is necessary to describe how the data obtained from
iterature were handled in order to contextualize the final results
resented in this paper. To illustrate the plausibility of classifying
omposite wastes using the properties of the constituent chemi-
als (physicochemical, toxicological, ecotoxicity, and exposure
otential), a data set of 35 chemicals was collected (Table 1).
he data were sourced from a number of data banks, and wher-
ver possible, each of the lowest level attributes in a given
ierarchical leaf was provided with all the relevant informa-
ion. Nevertheless, it was observed that large differences exist
n the data available in literature, particularly in terms of values
nd units associated with these values. These differences in data
ere presumably owing to differences in measurement protocols

nd the biological species involved in the generation of the data
y various researchers and institutions. Other reasons for these
ifferences could probably be attributable to different conditions
f measurement, or observation, or arising from discrepancies

etween measured and calculated values.

By way of example, the acute toxicity attribute for aquatic
rganisms (e.g. fish, invertebrates, and algae) was found to be
xpressed in different exposure times of 24, 48 or 96 h in differ-
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Table 1
Toxicity, physicochemical, ecotoxicity and exposure potency data sets for 35 chemicals

Chemical substance CAS# Physicochemical
properties

Toxicity (humans) Exposure potency Ecotoxicity

Fl R Acute Chronic Persistence Bio Acute (F, D, Al.) Chronic (F, D, Al.)

Inh. LC50
(mg/l)

O LD50
(mg/kg)

D1 LD50
(mg/kg)

Cancer Non-cancer Air (d) Water (d) Soil (d) BCF/BAF (d) LC50 (96 h) EC50 (48 h) LC50 (14 d) EC50 (14 d)

A W A W

1 Hexachlorobenzene 118-74-1 0 0 3.6 3,500 No data 3.2E+3 4.7E+3 6.1E+4 9E+4 1,564 2,088 2,088 12,240–21,140 3-F, 20E-3-Al 8.3E-3-D No data No data
2 1,2,4-Trichlorobenzene 120-82-1 0 0 300 1,100 11,400 0 0 3E+1 2.1E+2 55.2 180 180 120–1,320 2.9-F 0.4-D 2.4-F 3.4-D
3 Formic acid 64-18-6 0 2 7.4 730–1,830 No data 0 0 1.7E−1 4.7E−3 No data No data No data 0.22 46–100 F 60-D 100-A No data No data
4 Acetonitrile 75-05-8 3 0 16,000 4,000 1,250 0 0 1.6E+2 7E+1 54 56 28 0.3–0.4 1640-F 10000-D NA NA
5 Hexachloro-1,3-

butadiene
87-68-3 1 1 102 25 NA 8.5E+1 1.1E+2 1.5E+4 8E+4 1,194 180 180 2,163 NA NA NA NA

6 Cadmium*1 7440-43-9 1 1 8 2,330 NA 8.3E+1 3.9E−49 5E+6 3.6E+5 0 0 0 No data Insoluble in
water

Insoluble in
water

7 Hydrogen cyanide 74-90-8 4 2 0.16 4.5 6.9 0 0 2.1E+4 1.9E+4 No data No data No data 0.20 0.12 No data 2.2-F No data
8 Phenol*1 108-95-2 2 0 0.316 530 670 0 0 5.7E−2 5.4E−3 0 5 5 2 24.9-F 42-D 0.28-F 3
9 Formaldehyde 50-00-0 4 0 0.48 500 270 3E−3 3E−4 4.8 5.2E−1 0.125 7 7 Not

bioaccumu-
lative

24.8-F 21-D No Chronic
effect

10 Allyl alcohol 107-18-6 3 0 0.165 64–105 48 or 89 0 0 1.7 2.3 0.61 0 27 Not
bioaccumu-
lative

0.32 0.5 NA NA

11 Carbon tetrachloride 56-23-5 0 0 8 2,350–2,920 5,070 8.2E+2 7.8E+2 1.4E+4 1.3E+4 400 years 1000 years 5 (volatile) 30 43-F 29(35)-D None None
12 Bis(tributylin) oxide 56-35-9 No data No data 0.065 112 (180) 900 0 0 2.8E+3 2.5E+4 1.1–18 0 0 900–30,000 3.4-F 0.0046-D No data 0.00018-D
13 Tetrachloroethyene 127-18-4 0 0 4 320–8,850 5,000 1.8 1.4 2.2E+2 1.5E+2 60 14 0 (volatile) 25.8–77.1 13.4–23.8-F 7.49–8.5-D 1.4–2.8-F 1.1-D
14 Benzene 71-43-2 3 0 13.05–52.2 930–7,000 8,260 1 8.5E−1 1.7E+1 1.4E+1 13.4 ** 7.2–38.4 6–24 6–15-F 140–320-D No data 1-D
15 Toluene*1 108-88-3 3 0 12.5–28.8 635–5,580 8,390–18,090 0 0 1.0 1.3 0.125 ** *** 90 28–66-F 11.5-D 13.7 No data
16 Glyphosate 1071-83-6 0 0 1.3 >5,000 >5,000 0.01 0.073 49 350 No data 8.1 14.9 0.18 10-F 0.015-D 0 0
17 Gamma-HCH

(Lindane)
58-89-9 1 0 1.56 88 1,000 36 130 3.8E+3 1.2E+4 No data 281–301 No data 1,400 0.13–48-F 0.048–1.6 0.0091–0.024-

F
No data

18 Methylene chloride 75-09-2 1 0 73,000 1,600 >2,000 0.61 0.37 44 25 No data 704 No data 2–40 502-F 220-D 240-F No data
19 P-phenylenediamine 106-50-3 0 1 No data 80 5,000 0 0 0.42 0.069 0.6 0.16 0 0.38 0.06-F 0.4-A No data 0.1–0.18-D
20 Sec-butyl alcohol

(butan-2-ol)
78-92-2 3 0 48.5 6,500 No data 0 0 0.6 0.27 2 5 0 1.71 3760-F;

950-A
No data No data No data

21 Ethylene oxide 75-21-8 4 3 1.59–4.14 72–320 Not irritant 31 15 2E+3 9.3E+3 71.6 12.2 No data 0.35 84–F No data No data No data
22 Methyl chloride

(chloromethane)
74–87–3 4 0 5.3 1,800 No data 35 2 5.4E+2 3E+2 >150 >10 years No data Not

bioaccumu-
lative

270-F No data No data No data

23 Parathion-methyl 298-00-0 3 1 0.135 4 2,000 0 0 1.5E+3 4.8E+3 32 min 40 No data 71 No data 7.3 No data No data
24 Nitrobenzene 98-95-3 2 0 0.75 580–640 450–760 0 0 35 270 Not Persistent 3.1–4.8 42.60-F 35–50-D No data 35-D
25 1,4-Dioxane 123-91-1 3 1 51.3 5,000–6,500 7,500–8,000 3.1E−2 9.6E−2 3.8E−2 1.2E−1 0.34–3.1 28–540 28–180 0.2–0.7 >8000-F 24–8400-D No data No data
26 Ethyl benzene 100-41-4 3 0 17.2 3,500 15,000–20,000 0 0 0.33 0.8 38 years Not Persistent 1–79.34 12.1-F 9.2-D No data No data
27 Triallate 2303-17-5 0 0 5.3 1,100 5,000 0.19 0.041 92 20 No data 61.3 18 1,280–1,520 1.3-F 91-D No data No data
28 Hexachlorocyclo-

pentadiene
77-47-4 0 0 0.035 315–1,300 150–820 0 0 50 250 0.021–4 < 88.5 < 100 1,230 0.180-F 0.12-D,

0.08-A
0.0144-F No data

29 Fenthion 55-38-9 0 0 0.0–1.2 200–300 1,680 0 0 7.9E+3 3.6E+4 <12 h 240 < 1 Not
bioaccumu-
lative

2.7E-3–0.87-
F

0.006-D,
1.79-A

1-D No data

30 Dicofol 115-32-2 1 0 5 500 2,000 76 230 5.8E+3 1.7E+4 No data 0.33 30–60 10,000–25,000 0.065–1.6-F,
0.14-D,

0.073-A 0.4-D No data

31 Acrylaldehyde
(Acrolein)

107-02-8 3 2 0.018–0.021 42 200 0 0 2.2E+3 1.1E+4 No data 21–69 No data 344 0.014-F 0.051–0.08 No data No data

32 Chlorobenzene 108-90-7 3 0 18 1,110–2,455 >2,200 0 0 2.9 14 7.5 75 Not persistent 41–447 7.4–22.6-F 0.59–19.9-D 0.021-F 2.5-D
33 Acetone 67-64-01 3 0 76.1 1,800–9,750 20 0 0 0.36 0.23 10 Not Persistent 0.69 6,210–8,120-

F
>15,000-D No data 4,550–

4,800-D
34 1,1,1-Trichloroethane 71-55-6 1 1 18 >2,000 >15,000 0 0 200 190 >180 1 year Not persistent 0.7–9 52.8-F 2384-D 133-F No data
35 Acrylonitrile 107-13-1 3 2 1.3 81 148 1.8 1.7 88 65 5 0 0 48 25-F 7.6-D 0.34–3.6-F No data

Fl: flammability; R: reactivity; Inh.: inhalation; O: oral; D1: dermal, C: cancer; O: oral; Bio: bioaccumulation; F: fish; D: daphnia; Al.: algae; NA: not available; *1 implies that data for 48 h or 14 days was extrapolated using the available data published in literature; 0 implies that the
chemical do not produce the effect under investigation. ** Do not hydrolyze in water; *** vaporizes immediately from the soil. Pimephales promelas or Ictalurus punctatus (fish, fresh water) flow through for 96 h (this is the type of fish used in the calculations reported in this article),
and for the invertebrates, the daphnia magna (crustacean) data for 14 days was used.
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next step entailed analysis of the quantities of each constituent
component present in the composite waste. The quantity of each
chemical was expressed as a percentage in the range of 0–1.
N. Musee et al. / Journal of Haz

nt units, viz. lethal concentration (LC) or effect concentration
EC) of 0, 50, 90 or even 100. In this paper, LC50 for 96 h and
C50 for 48 h were used because of their ready availability in

iterature pertaining to freshwater fishes (Pimephales promelas
nd Ictalurus punctatus) and crustaceans (daphnids), respec-
ively. In addition, limited chronic aquatic toxicity data for most
f the 35 chemicals used in our study, led to acute aquatic toxic-
ty data being solely used for modeling ecotoxicity. On the other
and, some of the data for particular attributes were expressed
n ranges for several chemicals. In accordance to the general
ractice of experts, in our algorithm, we used mostly the data
orresponding to the worst case scenario to optimise safety aris-
ng in planning possible mitigating alternatives for managing the
aste under question.
Two of the 35 chemicals (hydrogen cyanide and formic acid)

ad no data for the persistence attribute. In our case, we assumed
hat these chemicals were not persistent in any of the three
nvironmental media. However, as data become available, the
values can be substituted. In such an eventuality, it would be

rudent to check if any significant changes might occur to the
nal waste classification ranking, where one or both of these
hemicals are constituent components. Where persistence data
or only one environmental medium for a certain chemical was
vailable, it was automatically used as the system input.

To demonstrate the feasibility of the proposed algorithm for
aste classification, nine hypothetical composite wastes, each

ontaining five chemicals with known human toxicity, physic-
chemistry, ecotoxicity and exposure potential, as reported in
able 1, were generated. To analyse the waste and rank its level
f hazardousness, the system required a total of 71 inputs (quali-
ative or quantitative) to initialize the classification process. The
ystem results generated are presented and discussed in detail in
ection 4.

Fuzzy algorithm works with numerical data and so the qual-
tative classification of the effects related to infection from
athogens had to be transformed from symbolic into numeri-
al values. For each category of pathogens, the linguistic values
ere transformed into numerical scores in the range from 0 to
. Importantly, these scores were defined as fuzzy numbers to
ncorporate vagueness and fuzziness in human judgment in clas-
ifying infectious effects owing to pathogens. The numerical
cores for the fuzzy system were determined using simple lin-
ar algebraic equations and the overall level of effects depicted
he predominant category of pathogens present in the waste,
xpressed as a percentage.

For example, according to the UN classification of infectious
ubstances, viruses are grouped into four categories (Group-
, Group-II, Group-III and Group-IV). In our algorithm, these
ategories were represented by using both fuzzy triangular and
rapezoidal distribution functions, as shown in Fig. 3 (detailed
escription of these classes was presented in part I of this work
1]). To obtain numerical scores, four linear algebraic equations
ere developed to compute the crisp input values in accordance
o the dominant virus group, as a function of the constituent
ercentage of the viruses to the entire population of pathogens.
or instance, if the predominant viruses are Group-III viruses,

hen the fuzzy input number was computed using the linear
F
i
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quation:

III = 0.35 + 0.3P (2)

here P (0 ≤ P ≤ 1) is the overall percentage of viruses in the
aste.
Similar equations were developed for other virus groups as

ell as the fungal and bacterial pathogens. These equations are
mpirical and therefore subject to change depending on the needs
he user of the decision support tool described in this paper.
he full equations used for the classification of the infectious
athogens in the hazardous waste are provided in Appendix A.

. Illustrative case studies

In these illustrative examples, the composite wastes studied
an be generically described as a simple mixture of chemicals.
ccording to Feron et al. [17], a simple mixture of chemicals,

egarded in this study as a composite waste, is defined as a mix-
ure comprising a relatively small number of chemicals (mostly
ess than 10) whose composition is qualitatively and quanti-
atively known [18]. For illustrative purposes, each composite
aste in our study were limited to five chemicals, for each of
hich 13 data inputs were required to initialize hazard identifi-

ation and assessment of the waste. In total, the system required
1 user inputs to initialize the computing algorithm in order to
lassify a given composite waste.

.1. System functionality

Fig. 4 illustrates the functional steps of the algorithm pro-
osed in this paper. Owing to the complex relationships arising
rom the contributions of each chemical, in this algorithm, waste
lassification was approached as an unstructured decision prob-
em, where both quantitative and qualitative data were taken into
ccount. First, the constituent components of the waste were
dentified. In this case, the composite wastes were deemed to
ig. 3. The transformation of the qualitative virus classes into numerical scores
n the universe of discourse of 0–1.



100 N. Musee et al. / Journal of Hazardou

O
e

p
c
c
c
s
a
a
q
s
u
o
t
O
p
e
v

t
c

r
p
t
o
p
a
f
fi
q
a

4

r
i
T

a
t
o
s
s
e
a
t
t
o
a
t
t
w

a
p
f
(
p
R
v
t
r
m
a
t
o
t
s

e

Fig. 4. System functionality for fuzzy waste classification.

bviously the constituent chemical with the highest percentage
xerted most influence on the final waste ranking.

In step two, the composite waste was assayed to determine its
H. The pH data were crucial in evaluating the corrosivity of the
omposite waste. Wastes with extreme pH values tended to be
orrosive. In the third step, all the relevant information for each
hemical was sourced from literature and normalized in formats
uitable for application in the algorithm. In this case, the data
cquired were either numerical, qualitative and or a percent-
ge. Due to the diversity of the data for each chemical and the
uest to increase the proposed algorithm evaluation accuracy,
everal normalization procedures such as calculating mean val-
es, approximating data points using known experimental values
f certain species, as well as taking logarithmic transformations
o normalize distribution scales, among other, were adopted.

nce normalization was complete, the aggregated values for a
articular data set (e.g. flammability, reactivity, acute toxicity,
tc.) in each composite waste were computed. These aggregated
alues were then used as fuzzy input numbers into the fuzzy sys-

C
a
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ems at the lowest level of a given leave to initialize the waste
lassification process.

In the fourth step, the fuzzy rankings from all the knowledge
ule-bases in Level-V to Level-I were aggregated and the com-
uted lower level defuzzified output values were used as inputs
o the next level to determine their respective composite fuzzy
utputs. For illustrative purposes, the defuzzified Level-IV out-
ut values for acute, chronic and infectious attributes were used
s inputs to compute the composite defuzzified output value
or the toxicological effects attribute in Level-III. The defuzzi-
ed crisp outputs obtained at Level-I, together with the effective
uantity of waste were subsequently used to calculate the final
ggregated ranking of the composite waste.

.2. Case study results and discussion

In this section, we present nine illustrative case studies rep-
esenting different hypothetical composite wastes. The fuzzy
nputs of the hypothetical composite wastes are summarized in
able 2.

Simulation of the input data pinpoints how different variables
ffect the status of a given composite waste as a function of
he constituent chemicals and pathogens. The aggregated values
f the variables on different levels of the hierarchical decision
tructure are shown in Table 3. As the solution to the waste clas-
ification problem was hierarchically structured, it is possible to
xamine specific attribute scores in a particular composite waste
nd to assess their impact on the final waste ranking. By using
his information, decision-makers can formulate proper correc-
ive or preventive measures with a view to reduce the effects
f such wastes in the environment. Moreover, the designers can
lso use such knowledge to recommend benign chemical substi-
utions for some of the constituent chemicals at the design stage
o mitigate the adverse effects in the event of the associated
astes entering the environment.
To demonstrate how the algorithm was applied in classifying

given waste, consider the results of the first hypothetical com-
osite waste (W1) presented in Table 3. Different aggregated
uzzy values at different levels of the hierarchical decision tree
Fig. 2) were computed by using the constituent chemicals and
athogens, as the fuzzy inputs for various attributes defined in
ow 1 of Table 2. Columns 2–12 of Table 3 show aggregated
alues ranging from the flammability attribute (Column 2) to
he aquatic acute toxicity (Column 12). Column 13 presents the
esults for the highest constituent chemical value for the bioaccu-
ulation attribute that has been logarithmically transformed on
scale of 0–5. After considering the bioaccumulation values for

he constituent chemicals in W1, the highest logarithmic value
f the bioaccumulation was found to be 4.48. This indicates
hat W1 has a very high potential to accumulate in biological
ystems.

The aggregated solutions for the chemical(s) with the high-
st persistence value(s) in air, water and soil media are shown in

olumns 14–16, respectively. The persistence half-life values in
ll three the environmental media were scaled to values ranging
rom 0 to 1 for uniformity, as well as to aid transparent com-
arison in order to determine the medium in which the waste
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Table 2
A complete data set for the hazard and toxicity rankings of the individual constituent chemicals in a composite waste

Waste C1 C2 C3 C4 C5 pH NF1 NF2 NF3 NF4 NF5 NR1 NR2 NR3 NR4 NR5 IH1 IH2 IH3 IH4 IH5 OR1 OR2 OR3 OR4 0R5
(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27)

W1 0.15 0.30 0.10 0.25 0.20 2.5 0 0 0 3 3 0 0 0 0 0 3.6 300 0.065 16,000 13.05 3,500 1,100 112 4,000 7,000
W2 0.23 0.18 0.30 0.16 0.13 11.8 0 1 4 0 3 2 1 2 0 0 7.4 102 0.16 4 12.5 730 25 4.5 5,000 5,000
W3 0.20 0.20 0.23 0.18 0.29 5.8 0 0 0 3 1 0 0 0 2 1 5.3 0.035 0.012 0.018 18 1,100 315 200 42 2,000
W4 0.40 0.10 0.10 0.17 0.23 5.9 4 1 2 4 3 3 1 0 0 0 1.59 8 0.316 0.48 0.165 72 2,330 530 500 70
W5 0.10 0.10 0.60 0.13 0.07 8.1 4 0 1 4 3 0 0 0 0 1 51.3 1.3 73,000 5.3 0.48 5,000 5,000 1,600 1,800 500
W6 0.25 0.30 0.15 0.15 0.15 7.6 0 3 0 1 3 0 0 0 0 0 300 16,000 8 73,000 76.1 1,100 4,000 2,920 1,600 8,000
W7 0.18 0.15 0.22 0.25 0.20 4.2 2 4 3 3 2 0 0 0 0 0 0.316 0.48 0.165 48.5 0.75 530 500 105 6,500 600
W8 0.14 0.33 0.17 0.27 0.09 3.7 3 3 2 4 3 0 1 0 3 0 48.5 0.135 1.8 17.2 6,500 4 580 100 3,500
W9 0.30 0.25 0.20 0.15 0.10 13.5 3 4 0 0 1 2 3 0 0 0 1.3 1.8 3.6 0.065 5 81 80 3,500 180 500

DE1 DE2 DE3 DE4 DE5 CAR1 CAR2 CAR3 CAR4 CAR5 NCA1 NCA2 NCA3 NCA4 NCA5 P1 P2 P3 AT1 AT2 AT3 AT4 AT5 B1 B2 B3
(28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53)

1E+5 11,400 900 1,250 8,260 4.7E+3 0 0 0 1 9E+3 30 2.5E+4 160 17 0.4 0.3 0.3 0.0083 2.9 0.0046 1,640 6 21,140 1,320 3E+4
1E+5 10E+5 6.9 5,000 8,390 0 110 0 1.8 0 0.17 8E+4 2.1E+4 220 13 0.6 0.3 0.1 46 100 0.12 1.1 28 0.22 2,163 0.20
5,000 150 1,680 200 15,000 0.19 0 0 0 0 92 250 3.6E+4 1.1E+4 200 0 0 0 1.3 0.08 0.0027 0.014 52.8 1,520 1,230 0
1E+5 10E+5 670 270 89 31 83 0 0.003 0 9.3E+3 5E+6 0.057 4.8 2.3 0.2 0.2 0.6 84 10E+4 0.28 21 0.32 0.35 0 2
7,500 5,000 2,000 1E+5 270 0.096 0.01 0.61 35 0.003 0.12 350 44 540 4.8 0.3 0.4 0.3 24 0.015 220 270 21 0.7 0.18 40
11,400 1,250 5,070 2,000 20 0 0 820 0.61 0 210 70 1.4E+4 44 0.36 0 0.3 0.7 2.9 1,640 43 220 6,210 200 0.4 30
670 270 89 1E+5 760 0 0.003 0 0 0 0.057 4.8 23 0.6 35 0 0.3 0.7 42 24.8 0.5 3,760 8,400 2 0 0
1E+5 2,000 450 1E+5 15,000 0 0 0 31 0 0.6 4,800 270 9,300 0.8 0.45 0.4 0.05 950 7.3 35 84 9.2 1.71 71 4.8
148 1E+5 1E+5 900 2,000 1.8 31 4.7E+3 0 230 88 930 9E+4 2.5E+4 1.4E+4 0.7 0 0.3 0.34 84 0.001 0.0046 0.065 48 0.35 2E+4

B4 B5 A1 A2 A3 A4 A5 W1 W2 W3 W4 W5 S1 S2 S3 S4 S5 WQ (tonnes) Waste management Level
(54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72)

0.4 24 1,564 55.2 18 54 13.4 2,088 180 0 56 0 2,088 180 0 28 38.4 1,000 Partial
77.1 90 0 1,193 0 60 0.125 0 180 0 14 0 0 180 0 0 0 25 Effective
344 9 0 0 0.5 0 0 61.3 50 40 59 20 18 100 1 0 0 10 Moderate
0 0 0 0 0 0.125 0.61 12.2 0 5 7 0 0 0 5 7 27 90,000 Partial
0 0 0.125 0 0 150 3.1 7 8.1 704 3,650 540 7 14.9 0 0 180 600 Poor
2 0.69 55.2 54 1.46E+4 0 10 180 56 3.65E+5 704 0 180 28 5 0 0 3,000 Effective
1.71 0.2 0 0.125 0.61 2 0 5 7 0 5 0 5 7 27 0 0 1,000 Moderate
0 80 2 0.02 0 71.6 1.4E+4 5 40 0 12.2 0 0 0 0 0 0 30,000 Effective
2.5E+4 2.5E+4 5 71.6 1,564 10 0 0 12.2 2,088 0 0.33 0 0 2,088 0 60 6 Poor

C’s, NF’s, NR’s, IH’s, OR’s, DE’s, CAR’s, NCA’s, P’s, AT’s, B’s, A’s, W’s, S’s, WQ, WQeff, represent constituent components, NFPA rankings for flammability, NFPA rankings for reactivity; inhalation, oral, dermal, carcinogenicity, non-carcinogenicity, pathogen
percentages, aquatic chronic toxicity, bioaccumulation, persistence (A: air, W: water, S: soil), waste quantity and effective waste quantity, respectively. The numbers in the parentheses indicates the table column number. Numbers 1–5 in the first row refers to the
specific constituent chemical data in a given hypothetical composite waste. For instance, all symbols with 1 imply different chemical properties of constituent chemical one in any of the nine hypothetical composite wastes.
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Table 3
Complete set of system results based on inputs in Table 2

Waste NF NR IN OR DE C-CAR C-NCA GV GB GF AT B Ain Win Sin Peff WQnor

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

W1 1.350 0.000 1.597 0.13 0.036 0.150 0.102 0.470 0.645 0.315 0.8700 4.477 1.000 1.000 1.000 1.000 2.704
W2 1.770 1.240 1.958 7.424 4.353 0.180 0.205 0.860 0.315 0.515 0.0330 3.335 1.000 1.000 1.000 1.000 0.086
W3 0.830 0.650 34.93 0.640 0.243 0.200 0.219 0.000 0.000 0.000 1.4820 1.771 0.250 0.341 0.556 0.556 0.161
W4 3.270 1.300 2.329 0.941 0.337 0.182 0.147 0.410 0.260 0.160 0.0140 0.301 0.305 0.069 0.150 0.305 4.954
W5 1.730 0.070 0.249 0.063 0.059 0.138 0.141 0.240 0.370 0.645 0.2670 1.602 1.000 1.000 1.000 1.000 4.897
W6 1.500 0.000 0.022 0.047 0.787 0.150 0.152 0.000 0.315 0.280 0.0010 2.300 1.000 1.000 1.000 1.000 0.325
W7 2.700 0.000 2.487 0.311 0.356 0.150 0.196 0.000 0.315 0.280 0.0080 0.301 0.305 0.039 0.150 0.305 1.082
W8 3.100 1.140 2.829 8.554 0.055 0.270 0.288 0.808 0.370 0.233 0.0005 1.903 1.000 0.222 0.000 1.000 0.440
W9 2.000 1.350 2.753 0.792 0.229 0.196 0.180 0.210 0.000 0.645 4.0000 4.398 1.000 1.000 1.000 1.000 0.292

HCF HFF HRF HFRF ACF CHF IFF PCEF TEF ECF HHEF CPF EF WCF Qualitative Waste Class
(19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33)

0.634 0.424 0.092 0.323 0.500 0.500 0.807 0.628 0.824 0.767 0.835 0.817 0.862 0.893 Extremely high (1)
0.674 0.500 0.366 0.350 0.700 0.700 0.891 0.667 0.901 0.099 0.897 0.879 0.854 0.901 Extremely high (1)
0.163 0.327 0.280 0.241 0.500 0.700 0.090 0.367 0.700 0.500 0.700 0.700 0.550 0.700 High (1), moderate (0.25)
0.130 0.715 0.369 0.550 0.700 0.605 0.599 0.700 0.700 0.094 0.700 0.700 0.300 0.550 Moderate (1)
0.130 0.500 0.092 0.350 0.100 0.500 0.459 0.500 0.500 0.572 0.500 0.530 0.844 0.700 High (1), moderate (1)
0.090 0.466 0.092 0.350 0.300 0.507 0.227 0.500 0.500 0.091 0.500 0.500 0.856 0.550 Moderate (1)
0.427 0.649 0.092 0.489 0.504 0.675 0.227 0.699 0.645 0.092 0.657 0.631 0.300 0.448 Moderate (0.49), low (0.26)
0.508 0.690 0.366 0.532 0.810 0.833 0.887 0.700 0.892 0.090 0.901 0.901 0.842 0.901 Extremely high (1)
0.832 0.500 0.384 0.350 0.777 0.654 0.383 0.819 0.789 0.500 0.789 0.780 0.862 0.772 High (0.52), extremely high (0.22)

Cols. Column number, C-CAR, aggregated carcinogenicity; C-NCAR, aggregated non-carcinogenicity; GV, virus group, GB, bacteria group; GF, fungi group; AT,
aggregated aquatic toxicity; Ain, maximum normalized persistence in air; Win, maximum normalized persistence in water; Sin, maximum normalized persistence
in soil, Peff, effective persistence system input; HCF, fuzzy corrosivity hazard output; HFF, fuzzy flammability hazard output, HRF, fuzzy reactivity hazard output;
HFRF, fuzzy flammability-reactivity hazard output; ACF, fuzzy acute hazard output, CHF, fuzzy chronic hazard output; IFF, fuzzy infectious hazard output; PCEF,
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uzzy physicochemical hazard index; TEF, fuzzy toxicological hazard index; EC
PF, fuzzy inherent chemical and pathogens hazard index; EF, fuzzy exposur
lassification.

ad the highest potential to pose a threat to both humans and
he ecosystems. In the algorithm, a chemical with the highest
ersistence value was presumed to determine the composite’s
aste potential residence in the environment.
Column 17 depicts the fuzzy value of the maximum per-

istence (algorithm input) used as an input for evaluating the
xposure potency of the entire composite waste. For the case of
ypothetical composite W1 (Row 1), the results show that the
aste is highly persistent in all three environmental media. That

s, one or more of the chemicals had half-lives greater than 2 days
or air and greater than 180 days for water and soil. In this case,
he fuzzy input value of 1 was used in the waste classification
lgorithm. However, for composite W4 (Row 4), the algorithm
nput was 0.305 (Column 17), as the waste had a higher per-
istence in air than in water and soil based on the normalised
alues in Columns 14–16 (0.305, 0.069 and 0.150 for air, water
nd soil, respectively).

To model the exposure potency using the bioaccumula-
ion and persistence attributes, a knowledge rule-base of 12
F–THEN rules was constructed. For waste No. 1, the classically
ormalized input values of persistence (1) and bioaccumulation
4.477) yielded an exposure potency fuzzy index value of 0.862
anked qualitatively as high. Invariably, if W1 enters into the

nvironmental media, it has high potential of causing adverse
ffects due to its high exposure potency.

Column 18 of Table 3 shows the weighted hazard value
elated to the quantity of waste anticipated to impact on the

a
h
T
t

zzy ecotoxicity hazard index; HHEF, fuzzy human health effects hazard index;
ncy index, WQnor, normalized waste quantity, and WCF, fuzzy overall waste

cosystem. For composite W1, the waste quantity is 1000 tonnes
er year (Table 2, Row 1, Column 71). This is not high in terms
f annual production, but nonetheless, owing to its manage-
ent being rated qualitatively as ‘partial’ in Column 72 (Row

, Table 2), the weighted hazard ranking was computed to be
.704. Notably, the weighted hazard value for 1000 tonnes is
iven more weight in terms of its potential impact on the ecosys-
em in comparison to W8 (Table 2, Row 8, Column 71), despite
he latter being 30 times higher in annual tonnage, but managed
ffectively. As a result, the weighted hazard ranking for the latter
aste is evaluated to be low with a fuzzy value of 0.440.
Columns 19–21 of Table 3 present fuzzy aggregated values

or the Level-IV attributes of corrosivity, flammability and reac-
ivity, respectively. The following facts should be borne in mind.
irst, while all the reactivity input values for the constituent
hemicals in W1 are 0, the reactivity fuzzy module output shown
n Column 21 was evaluated as 0.092 on a scale of 0–1. This
mplies that even when all the constituent chemicals are benign
n terms of reactivity or any other attribute, a fuzzy system will
ot compute a defuzzified output value of 0. In fact, this is a
onservative value and indicates that heuristics do not accord a
ertainty of 0%.

Second, the flammability and reactivity fuzzy values of 0.424

nd 0.092, respectively, yielded a fuzzy flammability reactivity
azard index value of 0.323 (Row 1, Column 22 of Table 3).
he flammability reactivity hazard index was ranked linguis-

ically as moderate. Aggregating the corrosivity fuzzy output
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0.624) and the flammability reactivity hazard index (0.323),
sing a knowledge rule-base of 25 rules, yielded a fuzzy physic-
chemical hazard index of 0.628 (Table 3, Row 1, Column 26)
n Level-III. Similarly, the defuzzified modular numerical out-
ut value of 0.628 was linguistically ranked as high. It is clear
hat for W1, the final aggregated physicochemical hazard was

ainly influenced by the corrosivity, owing to the highly acidic
ature of the waste, as evidenced by the low pH of 2.5.

On the hierarchical leaf for computing the toxicological
ffects in Level-III (Fig. 2), the lowest level input values (Level-

attributes) for each of the Level-IV attributes were coded
nto the algorithm, i.e. acute toxicity, chronic toxicity and infec-
ious effects (Level-IV in Fig. 2.). For W1, the input values are
resented in Table 2 in Row 1, Columns 18–45 for the five con-
tituent chemicals and three pathogens. The pathogens present
n this composite waste stream in terms of population percent-
ges were 40%, 30%, and 30% for viruses, bacteria and fungi,
espectively.

By way of simulating the user system inputs, the fuzzy acute
azard index, fuzzy chronic hazard index and infectious hazard
ndex were computed to be 0.500, 0.500, and 0.807, respec-
ively. Owing to the dominance of Group-III type viruses and
roup-III type bacteria, which exhibit high infectious effects

ccording to the UN classification system, the overall infec-
ious effects were ranked linguistically as very high to reflect
he type of consortium of pathogens present in the waste. Using
he fuzzy aggregated values of acute toxicity (0.500), chronic
oxicity (0.500) and infectious effect (0.807), yielded a fuzzy
oxicological hazard index of 0.824 (Table 3, Row 1, Column27),
ualitatively ranked as very high. The infectious attribute in
evel-IV had the highest fuzzy output value, and it exerted the
ighest influence on the toxicological effects of W1. The reason
or this is that the input variables in the toxicological effects
ule-base were accorded the same weights in the design of the
F–THEN rules.

The computed aggregated fuzzy index values for the toxico-
ogical effects (0.824) and physicochemical effects (0.628) were
hen used as inputs for evaluating the overall potential human
ealth effects of W1. The resultant fuzzy hazard index related to
uman health was found to be 0.835, mostly owing to the con-
tituent chemicals and pathogens, linguistically labelled as high
o very high. In this case the toxicological effects dominated as
ar as the potential adverse effects of W1 on human health was
oncerned.

In modeling the aquatic ecotoxicity in Level-II (Fig. 2), only
he acute aquatic toxicity data were used, because it was mostly
ccessible. As the organisms (e.g. algae, fish or daphnia) used
n generating the ecotoxicity data for each chemical were differ-
nt, the data sourced from literature was a function of different
xperimental protocols and population samples. For the purpose
f ensuring the consistency of results to be derived from the
roposed algorithm, the ecotoxicity data were subjected to two
creening tiers before it was incorporated into the fuzzy model.
If a chemical had ecotoxicity data available from more than
ne organism, the highest acute value was chosen (a chemical
ith a value less than 1 was deemed more toxic than a chemical
ith a value greater than 1) in accordance to experts’ approach

F
o
t
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ig. 5. Bar graphs illustrating the influence of Level-I hazard indices and the nor-
alized waste quantity to the final waste class for nine hypothetical composite
astes.

f considering the worst case scenario (precautionary principle).
hat is, data value(s) for an organism indicating the potential to
xperience the highest aquatic acute toxic effect if the chemi-
al was released into the environment alone was chosen as the
ystem input. After identifying the highest value for each con-
tituent chemical in the waste, the highest aquatic toxicity value
or the composite waste was subsequently selected, using the
inimum function. In the second tier, the selected value in the

receding step was normalized to a range of 0–1.
For W1, the aquatic acute toxicity data for the constituent

hemicals are presented in Table 2 (Row 1, Columns 46–50)
nd the normalized value for the highest input data among the
ve chemicals is 0.870 (Table 3, Row 1, Column 12). This nor-
alized value was linguistically ranked as extremely acute and

he potential ecotoxicity of the waste evaluated using the fuzzy
ule model was found to be 0.767 (Table 3, Row 1, Column
8). These results suggest that the fuzzy model provided fair
stimates, as from casual examination of the aquatic toxicity
alues of the constituent chemicals one would expect W1 to
e highly toxic to the ecosystem. On the other hand, this value
an be improved and more representative, if the aquatic chronic
oxicity data for all the constituent chemicals become available.

Fig. 5 presents bar graphs illustrating the relationship of
he defuzzified fuzzy hazard indices in Level-I (chemical and
athogen effects, and exposure potency) and the normalized
aste quantity (ranging from 0 to 1) to the final waste class

anking for nine composite wastes.
As mentioned previously, the rank of a waste class is influ-

nced by input attributes in Level-I, in addition to the weights
ssigned to each of them during the design process of the
F–THEN rules. In this algorithm, the attributes related to intrin-
ic chemical properties and the nature of the pathogens were
ssigned the highest weights, followed by the exposure potency,
nd the contribution owing to the waste quantity that was
ccorded the least weight.

Waste No.s’ 1 and 2 shows that the actual weight exerts neg-
igible influence on the final waste classification. In both cases,
he defuzzified input values of the other two attributes (Level-I,

ig. 2) were so high that they invoked strong synergistic effects
n each other, which led to both waste hazards being linguis-
ically classified as extremely high. A similar phenomenon can
e deduced for hypothetical wastes No.s’ 8 and 9. In the case of
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2, the ranking of the waste hazard as extremely high concurs
ith the general understanding that any waste containing high
ercentages of hydrogen cyanide is more likely to exhibit high
oxicity properties.

As shown in Fig. 5, waste No.s’ 3 and 5 have the same final
aste ranking, although their inputs are markedly different. In
articular, the synergistic effects of all the Level-I attributes are
learly demonstrated in these waste streams. Reducing the input
alue of each of the Level-I attributes led to a drastic reduction
n the final waste ranking and the converse was also observed for

6, irrespective of the exposure potential being rated as very
igh. However, the moderate chemical and pathogenic toxicity
nd low weighted hazard associated with the quantity of the
aste, contributed to the overall ranking of the waste hazard as
oderate. Similarly, for W7, the constituent components had
oth low to very low linguistic rankings for the exposure poten-
ial and the waste quantity, respectively. On the other hand, the
nherent properties of the constituent components had moder-
te to high ratings. However, the contribution of each attribute
n Level-I led to the waste being rated as low to moderately
azardous. In view of the foregoing discussions, it is clear that
ntegrating various factors that influence the waste ranking by
se of fuzzy sets, even if measured in different metrics, pro-
ides a more balanced approach to preliminary classification of
omposite wastes.

. Conclusions

A comprehensive classification protocol for composite
astes is lacking as those presently reported in literature have
nly incorporated a limited number of chemical properties or are
ased on pre-defined lists. Moreover, the data and information
urrently accessible contain varying degrees of uncertainty, e.g.
xpressed symbolically, or measured using different protocols
nd metrics. Consequently, the comparability and integration
f different data sets required to build a robust hazardous waste
lassification model is still a major limitation, particularly where
raditional classical approaches are adopted. In this two-part
aper, a new classification methodology was introduced for
anking the hazards of simple composite wastes on the basis
f their constituent components. Nine hypothetical examples of
omposite wastes were presented and discussed to illustrate the
pplicability of the proposed waste classification model.

The proposed methodology deals with data uncertainty, as
ell as difficulties in integrating different data sets without

ompromising the robustness of solutions. With the proposed
ethodology, the contributions of different chemical proper-

ies and types of the pathogens are integrated by hierarchically
ecomposing the problem and then applying fuzzy logic infer-
ncing at each level. This has made it possible to develop hazard
ndices at various levels of the hierarchical structure and to inte-
rate them into the next higher level, until the class of the waste
s determined.
The algorithmic model for composite waste classification can
e used in different ways as a decision support tool for real world
aste management problems. This could include rapid assess-
ent of waste hazardousness based on the intrinsic chemical

[
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roperties and presence of pathogens, selection of less hazardous
hemical substitutes in a particular application, and quantifica-
ion of the extent of the hazard posed by a composite waste to
oth humans and ecosystems in order to develop alternatives for
andling it adequately and cost effectively.

Nevertheless, application of the decision tool also has certain
imits at present. The first is related to gaps in the data on the
ntrinsic properties of chemicals. This can be improved as more
ata and information on numerous chemicals becomes avail-
ble in literature. Second, the system does not take into account
he possibility of the formation of new compounds, owing to
eaction of the constituent elements. This may result in the over-
ll waste class being over- or under-estimated, depending on
hether the reaction products are benign or more hazardous

han the original reactants.

ppendix A

Set of empirical equations used for evaluating the effect of
athogens

ategories Virus Bacteria Fungal

VI = P1 × 0.3 BI = P2 × 0.4 FI = P3 × 0.4
I VII = 0.15 + P1 × 0.3 BII = 0.15 + P2 ×

0.55
FII = 0.15 + P3 ×
0.55

II VIII = 0.35 + P1 × 0.3 BIII = 0.45 + P2 ×
0.55

FIII = 0.45 + P3 ×
0.55

V VIV = 0.65 + P1 × 0.35

hese above equations are empirical and are flexible enough to allow variations
ased on the data set of the user so as to meet the needs of policy makers
epending on hazardous waste management priorities.
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